NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

APPLICATION OF INERTIAL SENSORS
AND FLUX-GATE MAGNETOMETER TO
REAL-TIME HUMAN BODY
MOTION CAPTURE

by
William Frey Il 1

September 1996

ThesisAdvisors: Robert McGhee
Michael Zyda
Second Reader: Russ Whalen

Approved for public release; distribution isunlimited

REPORT DOCUMENTATION PAGE Form Approved OMB No 07040128

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing
data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate
or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork
Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USEONLY (Leave blank) 2. REPORTDATE 3. REPORT TYPEAND DATESCOVERED
September 1996 Master's Thesis

4. APPLICATION OF INERTIAL SENSORSAND FLUX-GATE MAGNETOMETER TO 5. FUNDING NUMBERS
REAL-TIME HUMAN BODY MOTION CAPTURE

6. AUTHOR(S) William H. Frey Il

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Naval Postgraduate School REPORT NUMBER
Monterey CA 93943-5000

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10.SPONSORING/MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed In this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a DISTRIBUTION/AVAILABILITY STATEMENT o 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

13. ABSTRACT (maximum 200 words)

Human body tracking for synthetic environment interface has become a significant human-
computer interface challenge. There are several different types of motion capture systems currently
available. Inherent problems, most resulting from the use of artificially-generated source signals, plagud
these systems. A proposed motion capture system is being developed at the Naval Postgraduate School
which utilizes a combination of inertial sensorsto overcome these difficulties. However, the current
design exhibits azimuth drift errors resulting from the use of inertial sensors.

This thesis proposes a new method of compensating for azimuth drift using a three-axis fluxgate
magnetometer. The fluxgate magnetometer is capable of azimuth drift compensation since its sensitive
axisisnot collinear with the local vertical. Thisthesisincludesaprogram for simulating the operation
of afluxgate magnetometer in C++. Theincluded C++ code smulates a fluxgate magnetometer and
provides an estimate of azimuth based on the magnetometer's output which istypically within five
degrees of the actual azimuth. Real magnetometer data for testing and verification was accomplished by
bench testing areal fluxgate magnetometer.

14. SUBJECT TERMS Human Body Tracking, Inertial, Magnetometer 15. NUMBER OF
PAGES

16. PRICECODE

17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION OF
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF ABSTRACT
REPORT PAGE ABSTRACT UL
Unclassified Unclassified Unclassified

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18 298-102

Approved for public release; distribution isunlimited

APPLICATION OF INERTIAL SENSORS
AND FLUX-GATE MAGNETOMETER TO
REAL-TIME HUMAN BODY
MOTION CAPTURE

William Frey
Lieutenant, United States Navy
B.S., Oregon State University, 1989

Submitted in partia fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1996

Author:

William Frey 111
Approved by:

Robert McGhee, Thesis Advisor

Michael Zyda, Thesis Advisor

Russ Whalen, Second Reader

Dr. Ted Lewis, Chairman
Department of Computer Science

ABSTRACT

Human body tracking for synthetic environment interface has become a significant human-
computer interface challenge. There are several different types of motion capture systems currently
available. Inherent problems, most resulting from the use of artificially-generated source signals,
plague these systems. A proposed motion capture system is being developed at the Naval
Postgraduate School which utilizes a combination of inertial sensors to overcome these difficulties.
However, the current design exhibits azimuth drift errors resulting from the use of inertial sensors.

This thesis proposes a new method of compensating for azimuth drift using athree-axis
fluxgate magnetometer. The fluxgate magnetometer is capable of azimuth drift compensation since
its sensitive axisis not collinear with the local vertical. Thisthesisincludes a program for
simulating the operation of a fluxgate magnetometer in C++. Theincluded C++ code simulates a
fluxgate magnetometer and provides an estimate of azimuth based on the magnetometer's output
which istypicaly within five degrees of the actual azimuth. Real magnetometer data for testing

and verification was accomplished by bench testing areal fluxgate magnetometer.

Vi

TABLE OF CONTENTS

INTRODUCTION ..o 1
A. RATIONALE FOR HUMAN BODY TRACKING..........ccovviiiinn. 1
B. ORGANIZATION OF THESIS.........co i 2
1. MOTION CAPTURE FOR SYNTHETIC ENVIRONMENTS.............. 3
A. HUMAN BODY MOTION CAPTURE..........cccoiiiiiiiie 3
B. CURRENT METHODSOF MOTION CAPTURE..............ccceivvnene. 6
C. OTHER EXPERIMENTAL MOTION CAPTURE METHODS............ 14
D. SUMMARY L 15
[11. FUNDAMENTALS OF INERTIAL SENSING.......cccoiiiiiiiireniciees 17
A. HISTORY OF INERTIAL SENSINGccccviiiiiiiiee 17
B. UTILIZATION OF INERTIAL SENSORS.........cciiiiiiiiiiiiee, 19
C. A DIFFERENT METHOD OF USING INERTIAL SENSORS............ 21
D. SUMMARY L 25
V. APPLICATION OF INERTIAL SENSORS TO HUMAN BODY
MOTION CAPTURE......i s 27
A. HUMAN BODY TRACKING PROBLEM RE-STATED 27
B. TRACKING A HUMAN BODY WITH INERTIAL SENSORS........... 29
C. ANINERTIAL TRACKING SYSTEM INDETAIL.......cccviiiiiinnns 31
D. BIOLOGICAL ANALOG. ... ciitiitiiee e 34
E. QUMM ARY Lo e 36
V. FLUX-GATE MAGNETOMETER FOR AZIMUTH DRIFT
COMPENSATION ..ot e 37
A. RATIONALEAND MAGNETOMETERBASICS.............coovviinee. 37
B. REAL MAGNETOMETERBENCH TEST ..o, 38
C. MAGNETOMETER SIMULATIONccoiiiiiiiiiee e 39
D. MAGNETOMETERAZIMUTH ESTIMATION.........coiviiiiiiien 40
E. MAGNETOMETER CALIBRATION.......cciiiiiiiiiiieee 44
Foo SUMMARY L 47
VI. VALIDATION OF 'ORIENTATION-ONLY" ARTICULATED BODY
MODELING ...t e 49
A. RATIONALE BEHIND 'ORIENTATION-ONLY'MODEL................ 49
B. HERCULESARTICULATED BODY MODELING SYSTEM............. 54
C. SUMMARY .. 56
VII. SUMMARY, CONCLUSIONS AND FUTURE WORK........ccceoiiiiirirne 59
A. SUMMARY AND CONCLUSIONS........cciiiiiiiiiiiieee e 59
B. FUTUREWORK ... e 61
APPENDIX A. PLOTS OF MAGNETOMETER OUTPUTS........ccccooeiienne 63
APPENDIX B. MAGNETOMETER SIMULATION CODE........ccccoeeivrnnne 75
A. MAGNETOMETER SIMULATION CODE.........cccctiiiiiiiiiiieieenen, 76
B. MAGNETOMETER AZIMUTH ESTIMATION CODE..................... 81
APPENDIX C. AZIMUTH ESTIMATION SIMULATION DATA............... 85
APPENDIX D. HERCULES APl C++ HEADER FILES......c..ocevveiiiveieennnn, 95
APPENDIX E. HERCULES APl DOCUMENTATION......cccoviiiiriiiiciiine 105
APPENDIX F. EXAMPLE HERCULES APPLICATION.......ccccoviiriieninnne 121
LIST OF REFERENCES........co e 155
BIBLIOGRAPHY .. 157
INITIAL DISTRIBUTION LIST .ot 159

Vil

viii

ACKOWLEDGMENT

The author wishes to acknowledge the very significant contributions and efforts of the
following individuals:

Doctor Michad Zyda, for hisimplicit trust in my ability to logistically coordinate and
produce the 1994 Interactive Three-Dimensiona Graphics conference in Monterey, California, and
for giving me the opportunity to write atechnical report, Off-the-Shelf, Real-Time, Human Body
Motion Capture for Synthetic Environments, which launched me into my thesis with both feet.

Doctor Robert McGheg, for his understanding of the trials and tribulations of a Master's
candidate in the process of writing athesis, and for his untiring tutelage and support which made it
possible for meto finish. Doctor McGhee is a professor who truly loves to teach. His effortsin
and out of class were absolutely invaluable.

Doctor Jim Clynch, for his generous loan of the equipment used in magnetometer bench
testing and for his technical support and advice.

Russ Whalen, for his superb technical support during magnetometer bench testing, for his
advice during the entire course of thisthesis and for his helpful commentsin his capacity as my
second reader.

Shawna McCartney, for her patience, understanding and support which has gotten me
through the final stages of thisthesis. Without her loving support and encouragement, | would

never have made it to the end.

My parents, Jerry and Judith Harper, whose words of encouragement through trying times
made it possible for me to overcome the obstacles which lay before me.

My peersin Naval Postgraduate School, class CS-51, for their constant companionship
and support. Misery truly loves company.

Thank you, all!

I. INTRODUCTION

A. RATIONALE FOR HUMAN BODY TRACKING

For anumber of years, researchers have been attempting to create believable three-
dimensiona worlds inside a computer for avariety of purposes including data visualization,
computer-aided design, training of all sorts, the control of remote robots and manipulators (tele-
operation), artificial enhancement of the real world, and entertainment. These researchers, for the
most part, have failed to hit the 'total immersion' mark, although consumers are generally willing
to overlook inadequacies while exploring new technological advances. [NRC95]

There are various reasons why synthetic environments have failed to reach the goal of 'total
immersion’. One of the main reasonsisthe lack of a natural interface between the computer and
the human machine. One might say that people have grown quite accustomed to using a keyboard
and a mouse to communicate with their computer, and indeed, some people are very adept at
operating a computer using these devices. However, keyboards and mice are not present when
people exit their domiciles and interact with the real world. People use al of their senses (the five
basic: sight, hearing, touch, taste and smell) to receive information about the world they live in and
they use their body motions to act on objects in that world.

The fact that people have so many senses to sample the world's information stream and that
they use their entire bodies to interact with that world is one of the main reasons that synthetic
environmentsfall short. The goal of virtual environments, in general, isto fool the human sensor
suite enough to make the human participant think that he or sheisinteracting with areal
environment. While fooling the human visual and auditory senses has become fairly routine for
synthetic environment researchers, fooling the other human senses has been found to be very

difficult. Thereismuch work left to be done on the human-computer interface. [NRC95]

Theissue of allowing peopleto interact naturally with a synthetic environment has been the
subject of much debate. Onethingisclear: If the user isto interact with a synthetic environment in
away which is perceived to be natural, then an interface device must be provided which is capable
of determining what the user is doing without interfering with their motion or encumbering their
body. Thisdevice must accurately capture the user's motions and supply them to the synthetic
environment generator with an update rate sufficient to provide the user with real-time response to

their actions.

B. ORGANIZATION OF THESIS

This thesis focuses on the issues surrounding the devel opment a human body tracking
system which utilizes inertial and magnetic sensors to overcome some of the drawbacks of motion
capture systems. Chapter |1 discusses the fundamentals of human body motion capture for
synthetic environments. Chapter 111 covers the fundamentals of inertial sensing and Chapter 1V
details the application of inertial sensors to human body motion capture. Chapter V discussesthe
use of athree-axis flux-gate magnetometer for azimuth drift compensation of a device which
utilizes gravitational sensors (accelerometers) for orientation determination. Also covered in
Chapter V isthe development of a C++ simulation of athree-axis flux-gate magnetometer and its
use in azimuth drift compensation. Chapter V1 discusses the adequacy of orientation-only tracking
for human body motion capture for synthetic environments. Chapter VII summarizesthisthesis
and addresses topics for future work in the area of human body motion capture using inertial

Sensors.

II. MOTION CAPTURE FOR SYNTHETIC ENVIRONMENTS

A. HUMAN BODY MOTION CAPTURE

Figure 1 shows the configuration of human body parts which must be tracked for the
application envisioned in thisthesis. In general, for the degree of realism envisioned in thisthesis,
if one desiresto track the entire human body, there are fifteen magjor parts to track independently.
The major portions of the body that must be tracked are the head (normally tracked as an input to
the graphics rendering software used to drive a head-mounted display), torso-clavicle region,
abdomen-hips region, upper legs, lower legs, feet, upper arms, lower arms and hands.

While more body parts than those shown in Figure 1 may be tracked, tracking any more
than these may result in diminished returns. For instance, it may not be worth the extra equipment
required to track the user's back and shoulders as several separate entities. Thisis, of course,
dependent upon the user's application. If the user's application requires separate tracking of the
shoulders and back or separate tracking of the parts of the foot, then the motion capture system
must be capable of adapting to these needs. In addition, tracking more parts than required
necessitates further encumbering the user, which may detract from the success of the virtual
environment interface.

There is aso atrade-off between the time required to process the physical information from
the parts of the body being tracked and the time required to calculate the positions of the parts of
the body that are not being tracked. For every body part that is not tracked, the system must
estimate its orientation using inverse kinematics. Inverse kinematics agorithms are typically
computationally complex and it is the author's opinion that they require more computing power
than measuring the orientation of the parts directly. For instance, direct tracking of only the

shoulder and hand positions requires that the position of the elbow and the joint angles

Y
7\
Joy

I
g

Figure 1 -- Proposed Human Body Tracking Configuration

of the shoulder, elbow and wrist be estimated. Thisis possible, but not as physically accurate or
computationally efficient as tracking the parts directly. [WALD95]

Tracking the body parts directly also hasits drawbacks. First, placing sensors on the body
encumbers the user. One of the goals of a synthetic environment is to completely immerse the user

in abelievable world where it will seem natural to be there. Placing more sensors than necessary

on the user's body is contrary to thisgoal. In addition, the cost of a body-tracking system varies
almost linearly with the number of body parts tracked; more sensors equates to higher cost.

The information required from each body part tracker varies. There are some devices
which provide al 6 degrees of freedom (DOF) (spatial position and orientation) for each tracked
object. Thisisoverkill for tracking the human body (or any other articulated body). For the
fifteen body parts displayed in Figure 1, it can be shown that spatial position isrequired for only
one (base) body part. For all other body parts, 3 DOF (orientation only) is sufficient to completely
describe the pose of the entire human body (or any other articulated body). All parts other than the
base part are spatialy positioned relative to the base part. This articulation technique is described
in detail in Chapter V1.

Using this scheme and the configuration of Figure 1 resultsin a system that can adequately
track the human body using only 48 DOF (NOTE: degrees of freedom are "...independent
position variables which would have to be specified in order to locate all parts of the mechanism."”
[CRAIB9] For the purposes of thisthesis, 6 DOF refersto the following variables: The earth-
fixed orientation angles -- azimuth, elevation and roll -- and the earth-fixed spatial position
variables-- x, y and z.).

The most popular method for measurement of human body part position and orientation
directly involvesthe use of electromagnetic fields. An electromagnetic field is generated by a
stationary transmitter and is detected by multiple receivers mounted on the user's body. One
receiver is attached to each of the user's body parts. It is used to detect the spatial position and
orientation of the body part relative to the stationary transmitter. This system will be described in
more detail later in this chapter.

Some systems, usually mechanical in nature, track body joint angles rather than body part
positions and orientations. While this method leads to a direct and reliable means of tracking the
human body, it istypically very encumbering to the user. Some of the systems that use this
method are exo-skeletal (attached to the body to measure joint angles directly). These systems are

naturally sensitive to the differences between users bodies and are reliant on the size of the user's

body parts (upper arm, forearm, etc.) to determine the spatial positions of the user's extremities.
Thus they must be re-calibrated for each new user to ensure proper operation. Of coursg, itis
possible to store a user's body part dimensions for later use once they have been measured.
There are various means of capturing object position and orientation which are currently
employed in the field of synthetic environments. Each has weaknesses which make it unsuitable,
or strengths which make it particularly suitable, for certain applications. The next section focuses
on the various means of human body motion capture, their technological capabilities, advantages

and disadvantages.

B. CURRENT METHODS OF MOTION CAPTURE

This section details the main methods of human body motion capture currently available.

The magjority of theinformation in this section comes directly fromVirtual Reality: Scientific and

Technological Challenges[NRC95]. Additional information was obtained directly from the

equipment manufacturers themselves and can be found in [FREY 95].

1. Mechanical Systems

Mechanical position tracking devices can be separated into body-based (exo-skeletal
systems) and ground-based systems. Body-based systems are those which are mounted on, or
carried on, the body of the user and are used to sense either the relative positions of various parts
of the user's body or the position of an instrument relative to afixed point on the user's body.
Ground based systems are typically not carried by the user but are mounted on some fixed surface
(i.e. the user's desk or the floor) and are used to sense the position of an implement relative to that
fixed surface.

Body-based systems are typically used to determine either the user's joint angles for

reproduction of their body in the synthetic environment, or to determine the position of an end-

effector (the user's hand, foot, etc.) relative to some point on the user's body. Since the body-
based systems are used to determine the relative position between two of the user's body parts, the
devices must somehow be attached to the user's body. This particular issue has raised many
guestions: How isthe device attached to the body in away which will minimize relative motion
between the attachment and the soft body part it is being attached to? How are the joints of the
device aligned with the user'sjoints to minimize the difference in the centers of rotation (a
significant source of error)?

Some other problems associated with body-based tracking systems are specifically caused
by the device being attached to the user's body. These systems are typically very obtrusive and
encumbering. They do not allow the user complete freedom of movement and they detract from
the possibility of the user experiencing complete immersion into the synthetic environment. Body-
based mechanical systems are, however, quite accurate and do not experience problems such as
measurement drift (the tendency of the device's output to change over time with no changein the
sensed quantity), interference from external electromagnetic signals or metalic devicesin the
vicinity, or shadowing (loss of sight of the tracked object due to physical interference of another
object). [NRC95]

Ground-based systems are typically used to determine the position and orientation (6 DOF)
of an implement manipulated by the user relative to some fixed point not on the user's body.
These devices are not typically attached to the user's body, provided the user can grasp the
manipulator in arigid manner. Like body-based mechanical systems, they are typicaly very
accurate and are not plagued by measurement drift errors, interference or shadowing.

Ground-based systems do suffer from one thing which the body-based systems do not:
They confine the user to work within the space allowed by the device. Usually this means that the
user is confined to work in a space the size of alarge desk. If the application does not require the
user to move around much throughout the task (i.e.. the user remains seated), thisis not usually

considered a problem. [NRC95]

Mechanical tracking systems are the best choices for force-feedback (haptic) devices since
they are rigidly mounted to either the user or afixed object. Haptic devices are used to allow the
user a"sense of touch”. The user can feel surfacesin the synthetic environment or feel the weight
of an object. The device can apply forcesto the user's body so that the user can experience a sense
of exertion. Ground-based systems are typically the best choice for incorporation of haptic devices
due to their rigid mounting on afixed surface. [NRC95]

Mechanical tracking systems aso typically have low latencies (the time required to receive
useful information about a sensed quantity) and high update rates (the rate at which the system can
provide useful information) [NRC95].

2. Electromagnetic Systems

Electromagnetic tracking systems are currently the most widely used systems for human
body tracking applications. They employ the use of artificially-generated el ectromagnetic fields to
induce voltages in detectors attached to the tracked object. Three orthogonal electromagnetic fields
are generated by a stationary transmitter. These fields interact with the three orthogonal coilsin
each detector attached to the tracked object. Induced voltages are generated in the detector coils
which are proportional to the spatial orientation of the detector relative to the transmitter.

These tracking systems are fairly inexpensive and can be used to track numerous objects
(body parts) with acceptable position and orientation accuracies (typically advertised to be on the
order of 0.1 inches and 0.5 degrees). They do not suffer from shadowing effects, but are typically
plagued by a sensitivity to background magnetic fields and interference caused by metal devicesin
thevicinity. Sincethey arereliant on the magnetic fields generated by the transmitter, these
systems are called "sourced" systems and have alimited tracking area, typically the size of asmall
room. [NRC 95]

Electromagnetic tracking systems can employ either AC or DC magnetic fields. Those
employing DC magnetic fields are typicaly less sensitive to interference caused by metallic objects
intheir vicinity [NRC95].

3. Acoustic Systems

Acoustic tracking systems utilize high frequency sound waves to track objects by either the
triangulation of several receivers (time-of-flight method) or by measuring the signal’s phase
difference between transmitter and receiver (phase-coherence method).

The "time-of-flight" method of acoustic tracking uses the speed of sound through air to
calculate the distance between the transmitter of an acoustic pulse and the receiver of that pulse.
The use of one transmitter on atracked object and a minimum of three receivers at stationary
positionsin the vicinity alow an acoustic system to determine the relative position (3 DOF) of the
object viatriangulation. This method limits the number of objects tracked by the system to one.
An dternative method has been devised in which several transmitters are mounted at stationary
positions in the room and each object being tracked is fitted with areceiver. Using this method,
the positions of numerous objects may be determined simultaneously. [NRC95]

Note that the use of one transmitter (or one receiver) attached to an object can resolve only
position (3 DOF). Three transmitter (receiver) sets mounted on the same object can be used to
determine the positionand orientation (6 DOF) of the object. The desire to track more than just
the position of an object suggests that the second method (multiple stationary transmitters with
body-mounted receivers) may be preferable.

The other method of acoustic tracking, phase-coherent tracking, may be used to achieve
better accuracies than the time-of-flight method. The system does this by sensing the signal phase
difference between the signal sent by the transmitter and that detected by the receiver. If the object
being tracked moves farther than one-half of the signal wavelength in any direction during the

period of one update, errors will result in the position determination. Since phase-coherent

tracking is an incremental form of position determination, small errorsin position determination
will result in larger errors over time (drift errors). [NRC95]

Some problems associated with both acoustic tracking methods result from the line-of-sight
required between transmitter and receiver. Thisline of sight requirement obvioudly plaguesthe
devices with shadowing problems. It aso limitstheir effective tracking range, although they
typically have better tracking ranges than electromagnetic systems. Unlike electromagnetic
systems, they do not suffer from metallic interference, but they are susceptible to interference
caused by reflections of the acoustic signals from hard surfaces and interference from ambient

NOi Se Sources.

4. Image-Based Systems

Image-based systems are lumped into two broad categories; those that use active targets and
those that use passive targets (or no targets). Targets are devices which, when placed on the object
to be tracked, are visible to the tracking system. In both systems, cameras are used to record the
object being tracked and detect the motion of the targets on the object. Typically, multiple cameras
are used so that the object may be tracked in three dimensions instead of just two. While only two
cameras are required to achieve three dimensiona tracking, more are typically used to provide
redundancy in an effort to prevent shadowing of the targets.

Image-based systems which use targets attached to the object being tracked are called
marker systems. The targets used in active marker systems are typically infrared light-emitting
diodes (IRED's) which emit light visible to the system but not to the user. Asin acoustic systems,
the detectors, or cameras, may be placed either on the tracked object or at stationary points around
the object. Obviously, cameras placed on a human body would be more obtrusive. For this
reason, placing the targets on the body and the cameras at stationary pointsin the room is normally

preferable.

10

Each camerais placed so that it has a unique perspective of the targets. Thus triangulation
of the targets can be used to track them in three dimensions. This technique reveals the first major
problem with image-based systems; determining correspondence of targetsin each of the camera
views. In order to use severa views of the same target to triangulate its position, a target must be
distinguishable from the other targets around it. One method of distinguishing the targetsisto
pulse their outputs in sequence with camera detection. Once the targets can be distinguished, the
remaining question is, how many may be used s multaneously. If orientation of the object is
desired in addition to position, at least three targets must be placed on the same object and their
differences in position used to determine the orientation of the object.

Image based systems rely on the cameras being able to detect the targets at any given instant
intime. If an object passes between a marker and a camera during the detection interval, the
camerawill fail to detect the marker. If this condition persists for along enough period of time,
tracking of the object will fail. Failurein tracking a human body may be caused by as simple a
thing as one body part obscuring another from all of the camera viewpoints. This effect is called
shadowing. As mentioned before, shadowing may be minimized by the use of multiple, redundant
cameras, but it cannot be totally eliminated.

Aswould be expected, multiple-source image processing requires alevel of computational
complexity not required by the other methods of motion capture. The combination of the
computational requirements and the use of multiple high-resolution cameras makes image-based
tracking one of the most expensive body tracking solutions available.

While they are not yet feasible for accurate body tracking in synthetic environments, lower-
cost, image-based systems would be very suitable for gesture recognition systems. For example,
the detection of hand or arm signals from the user directing the computer on which way the user

wants to travel in the environment.

11

5. Optical Systems

There are numerous means of optical tracking, each employing a dightly different
technique with differing equipment. This section will give a short synopsis of the most prevalent

methods followed by the pros and cons of optical tracking methods in general.

a. Position-Sensing Detector (PSD) Systems:

Position-sensing detectors (PSD's) are photo-€lectronic devices, each made from a
dice of silicon doped with materials which form aPN junction. The PN junction islight sensitive
and incident light will causeit to generate an electrical current. Thiselectrical current isinversely
proportional to the distance between the image of the incident light source and the sensing
electrode. When alight source is positioned over the device, itslocation in the x-y coordinates of
the PSD may be determined by comparing the relative strengths of current signals from various
attached electrodes.

When several of the PSD's are utilized from various positions, triangulation using
the signals from the devices may be used to determine the 3 DOF position of alight source. This
method is very similar to the image-based tracking method described above, the difference being
the sensing device. It suffersfrom all of the same problems which afflict image-based tracking

systems.

b. Structured Light Systems:

Typicaly in structured light systems, alaser beam and beam-forming optics are

used to create a known pattern of coherent light which is then scanned across the scene. A camera

is used to capture the scene as the light is scanned acrossit. Theintersection of the camera plane

12

and the laser light beam reflecting from the surfaces of the scene creates a three-dimensional

coordinate system [NRC95].

C. Laser Radar:

The concept of laser radar is similar to that of time-of-flight acoustic systems. A
laser is used to scan an object and the returning, reflected laser light is detected. The differencein
time between sending the beam and receiving the reflected light is afunction of the range to the
reflecting surface. If the beam is scanned over a scene, athree-dimensional picture of the sceneis

generated [NRC95].

d. Laser Interferometry:

This system uses a steered laser beam to track a retro-reflector mounted on the
object being tracked. The angle subtended by the steered laser beam, in two dimensions, and the
time-of-flight of the laser light forms a three-dimensional space. Another method uses several
lasers, each tracking aretro-reflector from a unique perspective, to form the three-dimensional
space [NRCO5].

In all of the structured light tracking methods, the use of laser light tends to make
the system extremely accurate. However, none of the above systemsis capable of tracking more
than afew objects simultaneoudly, and all are susceptible to shadowing. These problemstend to

make purely optical tracking methods insufficient for real-time tracking of the entire human body.

13

C. OTHER EXPERIMENTAL MOTION CAPTURE METHODS

1 Spread-Spectrum

Another method of navigational position determination is the use of the Global Positioning
System. Thistechnique uses a constellation of satellites orbiting the earth which emit signals
intercepted by a navigational receiver. Each signal is decoded by the receiver to determine the exact
distance between the satellite and the receiver. Triangulation isthen used to determine the
receiver's spatial position.

This technology can be adapted to provide a very accurate position determination on a much
smaller scale. The construction of alarge area (like afootball stadium) containing a set of low
strength spread spectrum transmitters would allow a suitably instrumented human body the
freedom to roam around, while each GPS-style receiver attached to the user's body would
determine the position of each limb. The use of three receivers attached to each limb would allow
the determination of limb orientation aswell as position.

If, as with the proposed inertial tracking system, the positional data was transmitted from
the user's body to the computer system via wireless communication means, the user would be
entirely untethered. Thus the user would be free to roam anywhere within the effective range of
the spread-spectrum transmitters.

The primary draw-backs of spread-spectrum human body tracking would be range
restrictions, the potential for high-frequency electromagnetic radiation exposure of the user, and
multi-path signal reception in confined spaces. In addition, the accuracy achievable by affordable
Spread-spectrum systems is yet to be determined and the initia cost of thistype of systemislikely
to be quite high. Asresearch continues and the technology is made more widely available, the

price should fall [BIBL94].

14

D. SUMMARY

Real-time, human body motion capture can be used as an outstanding human / computer
interface paradigm for synthetic environments and there are several methods available to
accomplish this. However, al of the current motion capture systems have characteristics which
either make them complicated or unsuitable for use as a synthetic environment interface. The
following chapters detail an inertial human body motion capture system that has al of the best

characteristics of motion capture systems to date and few of their drawbacks.

15

16

I1l. FUNDAMENTALS OF INERTIAL SENSING

A. HISTORY OF INERTIAL SENSING

In the early days of ship navigation across large distances, various techniques were
employed to determine the position of the ship on the Earth. Navigators observed that stars were a
valuable reference for position and heading as they always seemed to be in the samerelative
position at a certain time of night. This, however, was only good if the navigator could see the
stars and possessed an accurate timepiece. When there was significant cloud cover, they realized
that they required some other method of position determination.

Near land, navigators used a technique called "piloting”. Thisrelied on the use of
landmarks as references of the ship's position. Again, this method required that the navigator be
able to see the land which he was referencing. If the distance from land was too great (on the order
of 30 miles or more) or there was a significant amount of atmospheric disturbance (like fog), then
the navigator's system of piloting could not be performed.

What the navigators found they desired was some sort of self-contained navigation system
that could be relied upon when neither land nor the stars were visible. Very early on, navigators
realized that they could use a combination of the ship's speed, the ship's heading and an accurate
measure of time to estimate their position based on aknown earlier position. This method was
called "dead-reckoning”. [BOWD77]

Dead-reckoning required afairly accurate heading reference so that the ship's direction of
travel was known. Typically, a standard ship's compass was found to be sufficient.

The ship's speed was determined using alog line or atowed log. A log line was alength
of rope with markers that was thrown over the side of the ship and allowed to drift from the bow
of the ship past the stern. Since the length of the ship was known, the measured time that it took

for the markersto drift from one end of the ship to the other was inversely proportional to the

17

ship's speed. Thetowed log was a line with a propeller-type device on the end. Thislinewas
towed behind the ship and its rate of rotation observed. The rate of rotation was proportional to the
ship's speed.

The remaining requirement was an accurate chronometer. The ship's navigator typically
possessed a very accurate time-piece with which to measure the time difference desired.

With these three pieces of information, the navigator was able to determine the ship's
approximate position by multiplying the ship's speed by the time difference, taking into account the
ship'sdirection of travel, and adding the result to the ship'sinitial position. This geometric
solution worked fairly well for short periods of time, but was very tedious and tended to rely
entirely on the discipline of the navigator for careful calculation. In addition, many sources of
errors were found to exist, including wind and ocean current effects which the navigator could not
accurately account for. Thus, yet another method of self-contained navigation was desired that
would minimize the effects of dead-reckoning and allow the ship's position to be determined
without any external sources of information.

In his study of the physical characteristics of our environment over 300 years ago, Sir Isaac
Newton established the principles of inertial navigation. Hislaws of mechanics established the
foundation for self-contained inertial navigation systems. Nevertheless, it took nearly 300 years
for the technological base to sufficiently develop before Newton's principles could be put to
practical usein thefirst self-contained inertial navigation system. [ODONG64]

Inertial navigation systems, self-contained, independent of eectromagnetic
radiation and the Earth's magnetic field, are the contribution of modern technology
to progress in dead-reckoning navigation. These systems require no wind or
ocean-current data, no detectable radiation, no magnetic compass, no time-shared
usage of ground facilities, no operator time during flight, and no specia maps.
Their accuracy, independent of operating altitude and terrain, islimited amost
solely by the accuracies of their component instruments. [ODONG64]

While O'Donnell was discussing inertial navigation asit applies to aviation, the principles

are the same for ship navigation and inertial-referenced position determination in general.

18

Standard inertial navigation systems have been employed for avery long time on Naval
ships, aircraft, missiles and other bodies which needed to know where they were in an inertia
reference frame. They have relied upon being able to detect minute changesin abody's linear
acceleration, and then applying that acceleration, doubly integrated in time, to abody's initial
position and velocity to determine that position of the body at some later point intime. The
standard technique of double integrating linear acceleration is also referred to as " dead-reckoning”,
although this usage is misleading since the term originally referred to the single integration of

velocities.

B. UTILIZATION OF INERTIAL SENSORS

In order to determine a body's position in time, relative to an inertial reference frame, the

following information must be known about the body:

1) Thebody'sinitia position and velocity,
2) The body's orientation relative to the reference coordinate system as a function of time,
3) Thebody'slinear acceleration vector as afunction of time and

4) Thetime difference between theinitia time and the timein question.

From these quantities, the body's current position may be determined by the double
integration of the time-variant linear acceleration over the path of travel of the body, taking into
account its orientation relative to the inertial reference frame.

A standard inertial navigation system typically employs some type of tilt or angle measuring
platform to measure the orientation of the body relative to the reference coordinate system. The
typical orientation vector consists of azimuth (the body's heading or rotation about the inertial

reference frame's vertical axis), elevation (the body's pitch or rotation about its lateral axis) and roll

19

(the body's rotation about its longitudinal axis). These three angles serve to uniquely define the
orientation of the body relative to the inertial reference frame.

The standard "strap-down" inertial navigation system employs linear accel eration sensors,
which provide the body's instantaneous linear acceleration in its own coordinate system (the body-
fixed coordinate system), which is then converted into the equivalent linear acceleration in the
earth-fixed coordinate system by the application of transformations based on the body's orientation
relative to the inertial reference frame. Non-strap-down systems use the orientation sensors and
servo-motors to maintain the linear accelerometer platform (or stable table) at some zero reference
orientation relative to the inertial reference frame. This ensures that the directions of the sensed
linear accel erations remain constant with respect to the inertia reference frame so that no
transformations of the acceleration data are required prior to their use in the body's position
estimation. [ODONG64]

While the methods described above may seem like an ideal way of maintaining a position
estimate of abody, they arein fact plagued by sensor measurement errors which are inherent in the
devicesused. These errors may be partially compensated for but never eliminated, resulting in the
constant search for better quality inertia instrumentation.

Thefirst of these errorsis caled "drift", or the tendency of bias errorsin the angular rate
sensors of theinertial platform to cause ever-increasing orientation measurement errors. These
errors result from the single integration of the bias-ridden angular rate signal. Thisintegration
allows a steady build-up of error over time, which resultsin an incorrect estimation of the
orientation of the body relative to the earth-fixed coordinate system and a corresponding error in
the body's position estimate. |If the bias of the angular rate sensors was a constant, then
compensation would be ssimple. However, the sensor bias typically changes over timein an
unpredictable manner, so no complete compensation is possible.

If another method of determining instantaneous orientation exists, drift may be
compensated for by a periodic adjustment of the inertial sensor suite orientation to this external

reference. In standard inertial navigation techniques, thisis called a"fix". By taking afix, the

20

build-up of bias errorsis periodically returned to zero. By keeping the length of time between
fixes, the "fix interva", below a certain specified length of time, the bias errors can be made to be
relatively insignificant. If however, thefix interval is not strictly adhered to, then the bias errors
will push the position estimate out of tolerance and, in the world of standard inertial navigation, the
ship will have the potentia to run aground. [BOWD77]

The amount of drift, or bias, present is a characteristic of the angular rate sensors
themselves. Typicaly, the higher the angular rate sensor quality, the lower the bias error. The
lower bias error means that the fix interval may be longer. In other words, afix isnot required as
often, meaning less time spent taking navigational fixes, and less potentia for navigational errors.

Linear acceleration sensors also are plagued by bias errors and thus, also suffer from drift.
Their errors, however, are compounded by the fact that, the desired position data must be obtained
by double integration of the linear accel eration measurements. This causes an error in the position
estimate proportional to time-squared, rather than just time. This error may also be compensated
for by periodic "fixes" of the ship's actual position but, given the same sensor quality, the fix

interval will be much shorter than that required for the angular rate sensor bias compensation alone.

C. A DIFFERENT METHOD OF USING INERTIAL SENSORS

The above description of inertial navigation centers on position estimation using inertial
sensors. While determination of position can be useful in tracking the human body, it isfar more
useful to be able to determine the spatial orientation of the individual body parts (as discussed in
Chapter I1). Thus, amore appropriate use of linear accelerometersis as an attitude reference. This
is accomplished by attaching three orthogonal linear accelerometersto an object moving at constant
velocity, in an earth-fixed inertial reference frame and measuring their outputs. Since linear
accelerometers are sensitive to gravity aswell aslinear accelerations, in asystem which is not

continuously accelerating, the three linear accel erometers will produce an output vector indicating

21

the direction of the local vertical. Thelocal vertical vector can be used to determine a stationary
object's pitch and roll relative to the Earth-fixed inertial reference frame.

However, objectsin inertia reference frames seldom remain at constant velocity, and linear
accelerometers are sensitive to the forced accelerations of the object they are attached to aswell as
gravity. This characteristic of linear accelerometersis sometimes referred to as "slosh”. [FOXL94]
Slosh prevents a set of linear accelerometers, alone, from giving areliable indication of an

accelerating object's pitch and roll relative to the local vertical. Specificaly,

It can be shown that in aMach 1 vehicle executing aturn with a radius of 1,000
miles, thiserror in indicated vertical becomes approximately 5 millirad (although a
a velocity of 180 knotsthe error would be only 0.5 millirad). For a star-shot
attitude reference for precise navigation, this error, amounting to some 20 miles for
the Mach 1 case, is much too large, so some other method of determining local level
must be used. [ODONG64]

Note, however, that the accelerometers, when being used to indicate the local vertical, are
not subject to the error build-up caused by the double integration of their bias errors as before.
Instead the errors show up as random local vertical indication errors which can be minimized by
appropriate filtering. [BACH96] Thus, if some method is used to compensate for the "slosh" of
linear accelerometers, the pitch and roll of abody, relative to an Earth-fixed inertial reference
frame, may be reliably determined.

Also note that, if abody isnot continuously accelerating in one direction (a characteristic of
almost all real objects) then the average of the object's forced linear accel eration vector will
eventually be zero, leaving only the gravity vector indicated by the output of the accelerometers. In
other words, the relative long-term average of the accelerometer outputs yields the gravity vector,
which can then be used as an orientation reference in an Earth-fixed coordinate system. However,
as stated, thisis only along term solution and must still be compensated for slosh for short term
estimates of orientation.

One choice of compensation that immediately comes to mind is a combination of linear
accelerometers and angular rate sensors, since they are the two main inertial sensors available, and

both can be used to estimate angular orientation. As previously discussed, the bias errors of

22

angular rate sensors render them, at best, a short-term solution for the determination of angular
orientation. Thus, it can be seen that, if some method is devised to combine the high-frequency
(short term) characteristics of the angular rate sensors with the low-frequency (long term)
characteristics of the linear accelerometers, a stable indication of angular orientation may be
generated.

It would seem natural to apply alow-passfilter to the linear accel erometer outputs and a
high-pass filter to the integrals of the angular rate sensor outputs and combine the results to obtain
the desired orientation vector. The problem then becomes one of cutoff frequency selection for the
low- and high-pass filters, and what method of combination to use for the filter outputs.

McGheg, et. a., have been experimenting with an inertial navigation system for
autonomous underwater vehicle (AUV) control that utilizes a combination of angular rate sensors,
linear accel erometers and a flux-gate compass to estimate (by dead-reckoning) the Earth-fixed
position of the AUV between position fixes from an onboard GPS receiver [MCGH95]
[BACH96]. These works describe amethod of using angular rate sensors to compensate for the
dosh of linear accel erometers, while estimating angular orientation. In addition, a flux-gate
compass is used in combination with the angular rate sensors to estimate the AUV heading.

The strap-down inertial navigation approach, as shown in Figure 2, involves the use of
complementary filtering of the input signals in which the low frequency characteristics of the linear
accelerometer and flux gate compass outputs and the high frequency characteristics of the angular
rate sensor outputs are combined to produce a stable orientation vector of the AUV relative to the
Earth-fixed inertial reference frame. This method relies on the fact that linear accelerometers are
sengitive to gravitational acceleration as well asforced linear accelerations and that the flux gate
compass is sensitive to the Earth's magnetic field. Either sensor by itself has singularities, or
sensor orientations where the indicated orientation is not unique, or where there are an infinite

number of orientation solutions based on the sensor outputs.

23

A%Celq.ron}p[crg) xa Accelerometers (jda’)';a, fa)
@ Yo Zu .8 = asin—
»| a g}; ¥ =% —gsinB o
. ¥ 4
Estimated Bias |9, = —asmg_ C“’)Se g_-__ g +§§"ﬂ$ cosd
Dy qp 1) b
v Y (& 5, 2)
| T (4,0,)
\V R (q)) e’ "l’) Nurm &
Rat East Accel
A? I‘llgk(])lr:;mle 4 (x‘e’ y'e)
D.q, 1) Euler Angles
Magnetic Compass (6,0, y)
Q)
.. North & East Velocit "
J‘ (st Y w) + &e' y e o J Nom](:%e,Eﬁ;i Position
v 2,
Weight&gl Reset

+ Apparent
Current

(XY,

GPS Position
Waterspeed —1 & (9,6,)

¥ T
r
tn ‘ Interval Note: Difference taken
Euler Angles Betwoan before i mtegramr reset.
(4,0,v) GPS Fixes

Figure2: Twelve-State Velocity-aided Navigation Filter [BACH96]

Since the linear accel erometers are being used to measure the local verticd, if they are
rotated around an axis parallel to the local vertical vector, their outputs will not change. Thus, an
undetectable drift of the linear accel erometer / angular rate sensor package may occur about the
local vertical except at the Earth's magnetic poles. Thisleadsto abuildup of error in the azimuth
estimation which cannot be overcome by the addition of the angular rate sensors, asthey have their
own bias errors which cause drift.

To counteract this, aflux-gate compass is used in combination with the linear
accelerometers and angular rate sensors. Since the compassis sensitive to the Earth's magnetic

field and not the gravity vector (local vertical), it can detect rotations about the local vertical, and

24

can compensate for the azimuth drift not detected by the linear accelerometers. Thus, if abody is
either stationary or moving at a constant velocity (zero acceleration) then the combination of linear
acceleration and flux-gate compass sensors will provide accurate indication of the body's
orientation with no singularities.

However, due to linear accelerometer slosh, the above combination of linear accel erometers
and flux-gate compassis a low-frequency (long term) orientation solution only. If the attached
body is experiencing accel erations other than gravity, the indicated orientation will be incorrect,
depending upon the magnitude of the sensed accelerations. To compensate for this, angular rate
sensors provide the high-frequency component of the indicated orientation. When the outputs of
the entire sensor package are combined using the filter network shown in Figure 2, a stable,

accurate estimation of the AUV's Euler angles (orientation) results. [MCGH95 and BACH96]

D. SUMMARY

In summary, a stable orientation vector may be obtained for any body in an Earth-fixed
reference frame by the utilization of an orthogonal set of linear accel erometers, angular rate sensors
and flux-gate magnetometers. The linear accelerometer outputs are averaged of the long term to
yield the gravity vector. The short term components of the angular rate sensor outputs are
combined with linear accelerometer outputs by the use of a complementary filter to compensate for
linear accelerometer "dosh™. And, finally, the flux-gate magnetometer outputs are utilized to
compensate for the azimuth drift of the linear accelerometer / angular rate sensor combination.

The next chapter discusses the use of the above combination of inertial and magnetic
sensors in human body motion capture. Chapter V then specifically addresses the use of athree-

axis fluxgate magnetometer for azimuth drift compensation.

25

26

V. APPLICATION OF INERTIAL SENSORS TO HUMAN BODY
MOTION CAPTURE

A. HUMAN BODY TRACKING PROBLEM RE-STATED

Having established that inertial sensors can be used in a non-standard way to give a stable
angular orientation estimate of an attached body, the following question remains: How can these
techniques be applied to human body motion capture as an interface paradigm for synthetic
environments?

First, acomplete definition of the problem is necessary. What is desired is a system
capable of tracking a human body as a collection of 15 rigid segments in real-time while attempting

to meet the following goals:

1) Be unobtrusive (i.e. not encumbering to the user).

2) Allow virtually unlimited range of use / workspace size.

3) Beinsensitive to electromagnetic, acoustic, and other forms of interference.
4) Be untethered.

5) Be capable of tracking in any environment.

6) Be accurate, linear and stable with no singularities.

7) Be reasonably cost-efficient in the long term (i.e., after initial development costs).

Obvioudly, thisisavery ambitious set of goals. As stated in [FREY 95], there is no system
currently on the market which is capable of meeting all of these goals. The most widely used
systems available for real-time human body tracking are the el ectromagnetic systems produced by
Polhemus, Incorporated, and Ascension Technology Corporation. [FREY95] However, these

systems do not alow unlimited range tracking or workspace size. They are tethered, incapable of

27

tracking in all environments, and are sensitive to electromagnetic interference. In addition, all of
the systems produced by either company are rather expensive, at least at the present time.

The author believes that a method utilizing inertial sensors, as described in Chapter 111, is
readily applicable to real-time human body tracking and will revolutionize the way in which human
body tracking isdone. Theinertial system described below does not suffer from any of the current
drawbacks of human body tracking systems as described in [FREY 95] except, perhaps, being
encumbering to the user. This, of course, depends upon the specific implementation of the inertial
system.

Understanding the problem, the information desired from the system must next be defined.
The author has proven, through human body modeling simulations written in LISP and C++
(discussed in Chapter V1), that an entire human body can be reasonably modeled as an articulated
collection of 15 rigid body parts (head, torso, hips, upper legs, lower legs, feet, upper arms, lower
arms and hands), and that nothing more than 15 sets of Euler angles (Earth-fixed azimuth,
elevation and roll) isrequired to completely pose the entire body. This assumes ageneral synthetic
environment application. Specific applications may require modeling of additional body parts such
as separate shoulders, detailed hands or toes. If these additional body parts must be modeled, they
may not be trackable by any generic motion capture system. Thus, another method of determining
their orientations may be necessary (for instance, the use of a system to track detailed hand and
finger motions).

The output which must be generated by the inertial tracking systemis, therefore, a
collection of 15 sets of Euler angles (azimuth, elevation and roll); one set for each of the 15 body
parts being tracked. To provide this data, each body part's sensor package must be capable of
sensing 3 axes of linear acceleration, 3 axes of angular rate and 3 axes of flux-gate magnetometer
(described in Chapter V). The function of each of these sensors is described next.

The linear accelerometers, discussed in Chapter 111, provide the low-frequency component
of the Euler angle estimations, using the Earth's gravitational acceleration as areference.

However, linear accelerometers (being used to determine the direction of the local vertical) cannot

28

detect azimuth rotations of a body about the axis of the Earth's gravitational field, typically
considered to be the local vertical. For thisreason, athree-axis flux gate magnetometer is used to
compensate for rotations of the body about the local vertical. 1t can accomplish this because it
measures orientation relative to the Earth's local magnetic field vector, which is not collinear with
thelocal vertical. The combination of these two sensors yields a stable, low frequency estimation
of the sensor package orientation. The angular rate sensors, as described in Chapter 111, provide
the high-frequency component of the Euler angle estimations to compensate for the slosh of the
linear accelerometers. The low frequency component provided by the linear accelerometers
compensates for the drift of the angular rate sensors.

In actuality, the outputs from the linear accel erometers are combined with those from the
angular rate sensors by a complementary filtering arrangement. [BROW92] Theresult is
composed of the low frequency contribution from the linear accelerometers and the high frequency
contribution from the angular rate sensors. Thisdatais used to estimate the pitch and roll of the
rigid body being tracked. The estimates of pitch and roll are then combined with the outputs of the
flux-gate magnetometer to estimate the rigid body's azimuth, as described in Chapter V. Finadly,
the three desired Euler angles are made available as the orientation estimate of the rigid body being

tracked.

B. TRACKING A HUMAN BODY WITH INERTIAL SENSORS

Standard inertial sensors have, in the past, been fairly bulky. In fact, areasonably accurate
sensor package with low drift rate, manufactured by Systron-Donner for standard inertial
navigation applications, weighs several pounds and isthe size of apint milk carton. Clearly, this
type of sensor cannot be used for human body part orientation tracking.

What has transpired to make an inertial human body tracking system possible isthe
development of micro-machined linear accelerometers and angular rate sensors. There are several

companies now manufacturing micro-machined inertial sensors, linear accel erometers and angular

29

rate sensors, which can be used to produce the inertial sensor package described above in amuch
smaller package, with minimal power requirements. [FOXL94]

Fifteen inertial sensor packages of thistype would be sufficient to accurately track an entire
human body. The outputs of each of these sensors would be transmitted to a belt-mounted
€l ectroni cs package which would perform the data processing necessary to convert the inertial
sensor outputs into the desired body part orientation Euler angles. These 15 sets of Euler angles
could then be combined into a data packet and sent viawireless, radio frequency communication
means to the host computer system for further processing. Alternatively, raw sensor data could be
transmitted with al computations being performed at the host computer interface. The author
believes that it would be more efficient to process the raw sensor data into orientation vectors prior
to transmission. This subject, however, isleft for future work.

This system would serve as an ideal human interface to a synthetic environment simulation
system. The user could move in natural ways while the system unobtrusively tracks his’her
body's motions. The lack of asignal source or tether would allow virtually unlimited range of
operation and the system would be virtually immune to the normal sources of signal interference.
The system would be capable of tracking the human body in almost any environment a human can
enter.

Unlike current image-based and optical motion capture systems, an inertial tracking system
would not suffer from shadowing. Unlike current el ectromagnetic systems, an inertial system
would not suffer from alimited tracking range and would not be susceptible to metalic device
interference, with the possible exception of interference to the flux-gate magnetometers used to
stabilize azimuth drift. And, unlike acoustic systems, an inertial system would not suffer from
acoustic interference. Thus, it can be seen that, should this type of system be developed to its
fullest extent, it would not suffer from any of the limitations of current motion capture systems,
with the possible exception of user encumbrance. This limitation could be overcome as well by the
development of application-specific electronics, making the system lighter, more compact and more

energy-efficient.

30

In addition, the system would not be limited to tracking the human body. It could be used
to track any object in which the orientation of the object with respect to an earth fixed coordinate

system was desired.

C. AN INERTIAL TRACKING SYSTEM IN DETAIL

Aninertial sensor package like the one described above, mounted on arigid body, would
produce nine outputs: Three outputs proportional to the rigid body's rate of rotation about its
vertical, lateral and longitudinal axes; three outputs proportional to the rigid body's linear
acceleration along its vertical, lateral and longitudinal axes, and three outputs proportional to the
components of the Earth's magnetic field as sensed along the rigid body's vertical, lateral and
longitudinal axes. These nine outputs provide all of the information required to synthesize a stable
set of Euler angles describing the Earth-fixed orientation of the rigid body being tracked.

Following the work by McGhee et. al. [MCGH95 and BACH96], thefirst stepin
obtaining the Euler anglesfor arigid body isto use the linear accelerometers and angular rate
sensors outputs, combined using the complementary filtering arrangement shown in Figure 2, to
synthesize the pitch and roll of the body. Theinputsto the filter are actually the estimates of pitch
and roll from the linear accelerometers and the Earth-fixed (Euler) pitch and roll rates from the
angular rate sensors.

First, following a derivation by McGhee [MCGH96], the linear accelerometer data (x and y
components of linear acceleration) is converted into instantaneous estimates of pitch and roll (with

slosh errors) using the following formulas, respectively:

6, = arcsin% 4.2
= —arcsin— 4.2
o, arcsmgm:ose 4.2)

31

Note that the roll estimate is not usable when pitch reaches 90 since, at that point, the

denominator of Equation 4.2 becomes zero. thislimits that approach of thisthesisto orientations
with pitch between —g and +g. Thisisapotentially serious problem which can be solved by

representing orientation using quaternions. [COOK92] Such an extension is beyond the scope of
this thesis.

Next, since the angular rate sensors are attached to the body being tracked, they naturally
provide indications of angular rate in body coordinates. This data must be converted into the
Earth-fixed coordinate system (Euler rates) before it can be used in the complementary filter. To
do this, a body-fixed-rate-to-Euler-rate transformation matrix is applied to the angular rate sensors

outputs, which generates the following data transformations:

%:cosqom—sinqoﬁr (4.3)
z_‘f':seceﬁinqom+seceﬁtosqoﬁf (4.4)
C(Ij_(tp:pﬂanBE‘sin(pmﬂanHEtOS(pDT (4.5)

wherep, g andr areroll rate, pitch rate and yaw rate in body coordinates, respectively. These
equations can be found in matrix form in [MCGH93].

The transformed roll rate, pitch rate and yaw rate data, with the linear accelerometer
estimates of pitch and roll, are then fed into individual (one for pitch, one for roll) complementary

filters as shown in Figure 3 below.

Accelerometer - -
Angle Estimate Q‘ ;

y
Angular Rate Sensor > S > Compensated

Rate Estimate + Angle Estimate

Figure 3: Individual Complementary Filter

32

The output of each filter is an instantaneous estimate of its respective Euler angle; pitch or
roll. These estimates of pitch and roll are what is actually output from the system as the current
pitch and roll of therigid body. These estimates are also used in the conversion of the next set of
angular rate data from body rates to Euler angle rates, the initial estimation of roll from the raw
accelerometer data (Equation 4.2) and the estimation of azimuth when combined with the outputs
from the flux-gate magnetometer for azimuth drift compensation (discussed in Chapter V).

The complementary filtering arrangement, shown in Figure 3, is described by the following

S-domain (Laplace transform) equation:

o) = 2 (K, (9 - K, 1009 + 50,(9) (46)

When considering the responses of the above filter equation to the linear accel erometer

inputs and the angular rate inputs individually, the following transfer functions result [MCGH95]:

A - 1 here T= L (4.7)
@(s) 1+Ts K,
AS) - TS \here T=L (4.8)
@(s) 1+Ts K,

Now, the superposition of the two responses yields the following result:

os) ,) _ 1 _ Ts _1
o.(s) @(s) 1+Ts 1+Ts (4.9

The importance of thisresult isthat a perfect response is achieved with any value of K for

an ideal system. However, the redlities of the real situation (noise, drift, 'slosh’) imply that there

issome optimal value for K;. The constant K, determines the sensors' relative contributions to the

33

final output. Thisvalue can only be determined through experimentation. Thisis beyond the
scope of thisthesis and is therefore a subject for future work.

In the above filtering discussion, only the filter equations for roll are shown. Thefilter
equations for pitch and azimuth are identical. However, note that azimuth may not be reliably
determined by this system due to bias errorsin the angular rate sensors and the inability of linear
accelerometers to detect rotations about the local vertical (gravity vector). Angular rate sensors, if
integrated, can be used to estimate azimuth. However, with nothing to compensate for the drift
caused by the bias errors of the angular rate sensors, a buildup of azimuth error results.

[MCGH95] uses a magnetic compass to obtain alow-frequency azimuth estimate for
compensating the azimuth drift of the angular rate sensors. However, the magnetic compass used
in thiswork does not function properly in al possible orientations. It is primarily designed to give
azimuth only when oriented near the horizontal plane. If elevated or rolled too far, the compass
ceases to function. For this reason, athree-axis fluxgate magnetometer has been chosen to
perform azimuth drift compensation for the Artificial Vestibular System, as discussed in detail in
Chapter V.

D. BIOLOGICAL ANALOG

The name that the author and M cGhee have chosen to give the proposed system, "Artificia
Vestibular System” results from the similarity of the system to the mammalian vestibular system.
Every normal human head contains one complete vestibular system on each side, located in the
vicinity of theinner-ear. The human vestibular system is composed, in part, by "semi-circular
canals' and a"utricle". [HOWAGE]

The semi-circular canals consist of three roughly orthogonal circular canalsjoined by a
common cavity called the utricle. These canals are filled with endolymph fluid. Each canal
contains an expanded passage, called the "ampulla’, located near the point where the canal

connects to the utricle. The ampulla contains the sensory epithelium, or "crista ampullaris’.

The cristaampullarisis aprotrusion of epithelium into the cavity of theampulla. A
multitude of sensory cilia project from the cristainto a gelatinous mass called the "cupula’. The
cupulaisformed to allow it to swing from side to side while it effectively blocks the flow of any
fluid past the ampulla. The cupulathus forms a damped, self-centering pendulum.

When the semi-circular canals are rotationally accelerated, the movement of the canals
relative to the endolymph fluid displaces the cupula and is sensed by the system as an angular
acceleration. If the systemisimmediately decelerated (reverse rotational acceleration) the cupula
will return toward its centered (non-accel erating) state and the system will sense this as a stopping
of theinitial turning motion. Thisisthe normal state of most head motions; turning from a briefly
stationary position to another briefly stationary position. If the entire movement does not last more
than about 3 seconds, the human brain is able to accurately judge angular displacement.

If, however, the head isrotated at a constant angular velocity in one direction, the friction
between the canals and the endolymph fluid will rapidly bring the endolymph fluid up to the
rotational speed of the canals, allowing the cupulato return to its non-accelerating position. If the
head is subsequently decelerated, the system will sense this as an angular acceleration in the
opposite direction and the individual will experience aturning sensation and nausea. Thisiswhat
happens when the human body becomes "dizzy".

The utricle is the common connecting chamber between the three semi-circular canalsand is
filled with the same endolymph fluid that isin the canals. The sensory body inside the utricleis
called the macula. The maculais attached to the inside of the utricle on its anterior and medial
walls. It consists of amass of ciliated epithelial cells. The ciliaextend outward into a gelatinous
mass containing calcium carbonate particles called "otoliths'. Linear accelerations cause
displacements in the otoliths which are detected by the cilia.

Since the utricles are sensitive to the magnitude and direction of any linear acceleration,
they are also sensitive to gravitational acceleration. For this reason, the vestibular system is able to
sense its orientation relative to the local vertical (gravitational vector) when it is not being

influenced by other linear accelerations.

35

The combination of the semi-circular canals and the utricle of the human vestibular system
normally allows a human body to adequately sense its spatial orientation. The three semi-circular
canals and utricle perform similar functions in the human vestibular system to that of the angular
rate sensors and the linear accelerometersin the AVS. Thus the system proposed by the author and

McGhee can be accurately referred to as an Artificia Vestibular System.

E. SUMMARY

To make synthetic environments more useful, some type of an unobtrusive, real-time
human body tracking method is desirable. Due to the limitations of current motion capture
technology, there is no good solution to this problem.

Aninertial sensing system (Artificia Vestibular System) would not suffer from the
drawbacks of the current motion capture technology. Thisis because the system has no signal
source to be interfered with or to impose movement restrictions on the user. It uses the Earth's
gravitational and magnetic fields as a stable orientation reference. The technologies which have
made this possible are the new micro-machined linear accelerometers and angular rate sensors
being produced by several companiesin the United States.

The method of combining the sensor outputs using the complementary filtering scheme
described above has already been proven to work successfully in autonomous underwater vehicle
testing by McGhee, et. al. [MCGH95 and BACH96] Thistheory can be readily applied to the
tracking of human body limb segments for the purposes of synthetic environment interface.

Still, the system described in this chapter suffers from azimuth drift, or drift around the
local vertical. The next chapter discusses amethod of compensating for this azimuth drift using a

three-axis fluxgate magnetometer.

36

V. FLUX-GATE MAGNETOMETER FOR
AZIMUTH DRIFT COMPENSATION

A. RATIONALE AND MAGNETOMETER BASICS

Aswas discussed in Chapter 1V, the use of a combination of linear accelerometers and
angular rate sensors can yield a stable set of Euler angles describing the orientation of the rigid
body to which they are attached. A problem resulting from the use of these sensorsisthe linear
accelerometers insensitivity to rotations of the sensor package about an axis collinear with the local
vertical. In other words, the linear accel erometers cannot compensate for the drift around the local
vertical caused by the angular rate sensor bias errors.

To compensate for this, another sensor must be used which has a sensitive axis that is not
collinear with thelocal vertical. The only other type of sensor which is commonly available and
uses anatural signal source for reference is a compass or, rather, a device which is sensitive to the
Earth's magnetic field. The device that the author has chosen to use is athree-axis flux-gate
magnetometer.

A one-axis magnetometer is a device which senses the component of the Earth's magnetic
field aligned with its sengitive axis. In other words, when the sensing axis of the coil is parallel to
the magnetic field's lines of flux, the maximum output voltage will result. When the central axis of
the cail is perpendicular to the lines of flux, no magnetic field will be sensed and the minimum
output voltage will result. This behavior defines avector dot product relation, so the magnitude
and sign of the induced voltage are derived from a cosine function of the angle between the coil
axis and the magnetic field's lines of flux, alowing for bias and noise voltages.

The orientation of a sensing coil relative to the Earth's magnetic field may be determined, in
one dimension, by the comparison of the voltage induced in the coil by the Earth's magnetic field

and the expected maximum and minimum voltages. If the maximum and minimum magnitudes of

37

induced voltage are known, then the angle between the Earth's magnetic field and the coil axis may
be estimated.

One magnetometer coil, however, will yield only a partial solution. It can be shown that
two orthogona magnetometer coils are sufficient to produce a complete solution for orientation
provided the magnitudes of the expected bias and peak-to-peak induced voltage are known.
[MCGH96B] However, in the absence of any magnitude information about the Earth's local
magnetic field strength, three orthogonal magnetometer coils are required for acomplete solution

with automatic calibration of expected bias and peak-to-peak induced voltages.

B. REAL MAGNETOMETER BENCH TEST

In order to study the operation of a magnetometer in detail, the author bench tested ared
magnetometer. This study was necessary to ensure that the author's simulation of a magnetometer
would be correct, and that the author's devel opment of azimuth estimation code would be valid for
use with areal magnetometer.

The magnetometer available for the experiment was amodel 9200C three-axis flux-gate
magnetometer manufactured by Develco [DEVE86], serial number 1625-562. The power supply
used to drive the magnetometer was an in-house bias box consisting of three nine-volt batteries and
an on/off switch. A Microntadigital multi-meter was used for initial sampling of the magnetometer
outputs. In thefinal data-taking efforts, a portable PC with installed multi-channel anal og-to-
digital converter interface hardware was used for automatic data logging.

Thefirst step in the bench test was to build a bench test table which was free of metallic
objects and had the capability to orient the magnetometer in three degrees of freedom (DOF). To
simplify this process, the author chose to limit the orientation of the magnetometer to certain pitch
and roll values, but to allow the magnetometer to be oriented at any azimuth. This alowed the
author to use wooden blocks, cut at precise angles, to orient the magnetometer at the required pitch

and roll values. The author chose to use pitch and roll values of (?, £30°, £45°, and +60°.

38

The table which was used contained a small amount of structural metal. It was found that
the metal in the table adversaly effected the measurement valuesif the magnetometer was moved
relative to the location of the metal. Since this was the only table available, the author chose to
continue to use it, but to constrain the movement of the magnetometer to be in the center of the
table, away from the table's metalic parts. Eventually, it was decided that the magnetometer
should be elevated above the table to minimize the effects of the structural metal. The datataking
experiments were accomplished with the magnetometer el evated above the table by approximately
one foot by placing asmall cardboard box in between the table and the magnetometer.

The conduct of the experiment proceeded with the magnetometer being attached to each of
the angled wooden blocks individually and rotated through 360 degrees in azimuth, logging the
three magnetometer output voltages at azimuth intervals of 15 degrees, beginning with @ magnetic
(magnetic north). Plots of the magnetometer output voltages for pitches of @, £30°, £45°, and
+60° and rolls of +30°, +45° and +60° can be found in Appendix A. Plots of the same data from
the author's C++ magnetometer simulation for corresponding cases are also included in Appendix
A.

The comparison of the two sets of plots reveals that, although the magnitudes of the
magnetometer output curves are dightly different, the general shape of the curvesisthe same.
Thus, the author's magnetometer simulation appears to be correct for the cases shown. The
outputs may be made identical by the correct choice of bias and peak-to-peak voltage magnitudesin
the simulated case. The author chose not to take the time to do this when the follow-on simulation

work did not requireiit.

C. MAGNETOMETER SIMULATION

The ssmulation of aflux-gate magnetometer turned out to be arather smple matter. The
experimental work with the real magnetometer reveal s that the response of each magnetometer coil

to various orientations rel ative to the Earth's magnetic field is a sinusoidal function of the angle

39

between the coil axis and the Earth's magnetic field axis. This realization makes the s mulation of
the magnetometer output voltages a ssmple matter of establishing a reference peak-to-peak voltage
vector (Vptp) for each of the magnetometer coils, transforming the vector from Earth-fixed
coordinates to body-fixed coordinates using a three-by-three rotation transformation matrix
(tMatrix) representing the three relative orientation Euler angles (Roll, Elevation and Azimuth) and
adding the reference bias voltage to each of the smulated magnetometer output channels.

The code for the implementation of the ssmulated magnetometer isincluded in Appendix B.
The Supporting graphics and animation header files areincluded in Appendix D. The results of
the magnetometer smulation are included in Appendix A aong with the corresponding real

magnetometer bench test results for comparison.

D. MAGNETOMETER AZIMUTH ESTIMATION

Once the experimental data was available, the next step was to devel op the code which
would estimate azimuth given the pitch and roll estimates and the three magnetometer outputs. The
author chose to use C++ as the target language due to its popul arity among software devel opment
circles, familiarity and the availability of the author's graphical simulation application programmers
interface described in Chapter VI.

Appendix B contains the mgjority of the C++ code for magnetometer azimuth estimation.
The code included wasiinitially developed using MetroWerk's Codewarrior devel opment
environment for the Apple Macintosh series of computer systems. It was then ported to the Silicon
Graphics family of workstations, using the OpenGL graphicslibrary for the three-dimensional
graphics and X-Windows for the windowing routines. A large portion of the code which
generates the windows was written by Doctor Michael Zyda, Head of the NPSNET Research
Group at the Naval Postgraduate School, and was adapted with his permission. Aninitial
prototype of the simulation code was written by McGhee in Lisp and was available for comparison

with the C++ simulation.

40

The portion of the code responsible for positioning and orienting the test figuresisthe
author's Hercules Articulated Body Modeling package. This application programmers interface
(API) was designed to alow the building, animation and display of any articulated body. Itis
discussed in more detail in Chapter VI. The C++ header filesfor this system are included in
Appendix D. Their filenames all begin with 'HG' to distinguish them from other header files.

Thefirst step in magnetometer azimuth estimation isto initialize the simulated magnetic
field that will be used as areference. Theinitial field vector, called ravMagField, contains a
magnetic field which is directed solely in the negative-x direction. Thisdirection istaken to be due
south for the majority of the Earth. To thisinitia vector, the magnetic field deviation and dip angle
matrices are applied to give the reference magnetic field vector aredlistic direction. Since the
simulation was originally written in Monterey, California, the local magnetic field deviation and dip
valuesareused. These are approximately 15° and 60°, respectively. However, the author has
discovered that the deviation correction is unnecessary since magnetic north can be used for
reference just as easily astrue north. The deviation correction code has been left in place to allow
for future applications which might require it, but the author has set the deviation value to zero for
the purposes of this application.

Application of the dip and deviation matrices resultsin the final field vector, called
earthMagField. Thisvector isthen normalized to remove any dependencies on magnetic field
magnitude. The resulting earthMagField reference vector is aunit vector which pointsin the
direction of the dip-angle-corrected magnetic field for the Monterey, California, area.

Finally, the estimates of expected magnetometer bias, minimum and maximum channel
voltages are calculated. These estimates are used to filter the incoming magnetometer data,
allowing it to be compared properly to the earthMagField vector. Careful selection of the expected
bias voltage for each channel is necessary to ensure an accurate azimuth estimate. Section E of this
chapter coversthis subject in detail.

During operation, the EstimateA zimuth function is the function which does al of the work

of azimuth estimation. The data required to estimate the azimuth are the elevation and roll of the

41

magnetometer and the three magnetometer outputs. As discussed, thisdatais available from
elevation and roll estimates using inputs from the other sensors.

First, the expected bias voltage for each magnetometer channel is removed from the
magnetometer outputs and the magnetometer output vector is normalized. The only difference
between the normalized, expected earthMagField vector (N) and the normalized magnetometer
output vector (B) is athree-by-three rotation transformation matrix (R) representing relative
azimuth, elevation and roll rotations between the expected and measured magnetic field vectors.

[MCGH96B] Thus:

N = RB (5.1)

The matrix (R) is represented as follows [CRAI89]:

R=R(y) [R(6) (R(¢) (5.2)

Assuming that estimates of the magnetometer's elevation and roll are available from other
sources (which they are as described in Chapter 1V), the homogeneous transformation matrix

representing these rotations is:

Ry, = R(6) [(R(9) (5:3)
thus:
R=R(Y) R, (5.4)

42

Thus, as soon as the real magnetometer outputs are received, they are stripped of the
expected bias voltages, normalized (B) and transformed into earth-fixed coordinates (M) by the

application of the elevation and roll transformations as follows:

M =R,, B (5.5)

Now, the only difference remaining between the transformed magnetometer output vector

(M) and the reference earth magnetic field vector (N) is the relative azimuth transformation:
N=R(y) M (5.6)

Equation 5.6 can be re-written as:
ON,O0 [eosy -—siny OM, [

= LG O
%NZD— %m W cosy O%MZD (5.7)
MN,0 B 0 0 1FAM,C

Simplification of Equation 5.7 gives the following solutions for N1 and N2:

N, =cosy [M, —siny (M, (5.8)
N, =siny M, + cosy (M, (5.9

Matrix solution of these equationsfor cosy and siny yields:

ECOS¢’D= 1 oM, M0N0 (5.10)
HingHd M2+m2 v, MmN E '

43

Finally, cosy and siny are used to determine the azimuth estimation as follows:

Y = arctan(sin g, cosy) (5.11)

However, note that Equation 5.10 fails whenever M,” + M,? = 0. Manipulating Equations

5.8 and 5.9 yields:
N2 =M/ cos’ ¢ + M,?sin® y —2M,M, cosysin (5.12)
N,> = Mj2sin® ¢ + M,? cos” (¢ + 2M,M, cosysin (5.13)

Now, adding Equations 5.12 and 5.13 yields:

N2 +N,2 = M2+ M, (5.14)

Since N isthe normalized Earth's magnetic field vector in north, east and down
coordinates, notethat N, = N, = 0 only at the Earth's magnetic poles. Thus, solutions exist for
the above azimuth estimate (Equations 5.10 and 5.11) for al locations on the Earth's surface with
the exception of the regions around the north and south magnetic poles. [MCGH96B]

The above azimuth estimation algorithm isimplemented in C++. The C++ source codeis

included in Appendix B.

E. MAGNETOMETER CALIBRATION

It has already been stated in this chapter that selection of the expected bias voltages has a
great impact on the accuracy of the estimated azimuth. In the smulation that the author has coded
in C++ (Appendix B), the author has chosen expected bias and peak-to-peak voltage values based

on empirical observation during the bench testing of areal magnetometer. This method of setting

the bias voltages can yield afairly accurate solution initially. The author's choice of bias voltages
(which were identical for al three magnetometer channels) yielded azimuth estimates with an
average absolute error of around 2.3 degrees. While this may be suitable for some applications,
including the AV S, the author believes that some method of automatic calibration of the bias
voltages would yield a better real-time solution. To this end, the author devel oped a method of
automatic expected bias voltage calibration which was designed to reset the expected individual
channel bias voltages, each time an azimuth estimate was requested, if a set of boundary criteria
was violated.

The boundary criteria chosen are the running maximum and minimum output voltages from
each channel of the magnetometer. During each estimation, the current magnetometer outputs are
passed to the azimuth estimation routine. The estimation routine calls the MagSelfCal function to
set the expected magnetometer bias voltages if necessary.

The MagSelfCal function, as shown in Appendix B, updates running minimum and
maximum magnetometer voltages for each channel. It uses these voltages as boundary conditions
to test the current magnetometer outputs voltages. 1If the output voltage for achannel is either
above the current maximum or below the current minimum, the maximum or minimum voltage,
respectively, is set to the current output, and the bias voltage for that channel is re-computed as the
average of the maximum and minimum voltages.

In this manner, each channel bias voltage can be adjusted, on the fly, to account for
differencesin day-to-day operation. By adjusting the bias voltagesin real-time, there are no
anomalies which could ater the bias voltages from day-to-day which cannot be accounted for.

This method relies on two assumptions: First, theinitial expected bias and peak-to-peak
voltages must be selected in a manner which will allow the MagSelfCal function to operate
properly. Theinitia bias estimates must be as close to the real biases as possible to alow the initia
system operation to be accurate. Also, theinitial peak-to-peak voltage estimates, which are used to
set the initial maximum and minimum values, must be selected so that the initial maximum and

minimum values are within the expected bounds of the actual magnetometer maximum and

45

minimum outputs. If they are not, the actual minimum and maximum magnetometer outputs will
be ignored by the MagSelfCal function and will not be used to adjust the bias voltage properly. To
accomplish this, the author used Equations 5.15 and 5.16, with 2.1 as the divisor, to initialize the

expected maximum and minimum voltage values.

Vmax = Vbias + thp
21 (5.15)
\Y
Viin = Vbias ~ _pt; (5.16)

Theinitial results of this method of self-calibration were not promising. When used with
the same magnetometer output data files and ssimulation used to generate the tablesin Appendix C,
the azimuth estimates generated were almost always worse, normally by afactor of about two.
The author believes that this was caused by an insufficient data sample which allowed only a partial
calibration. The output data taken during bench testing does not necessarily contain the actual
maximum or minimum magnetometer output voltages.

This points out the second assumption made by the author: The author assumesthat a
magnetometer mounted on a user's body will pass through al six maximum and minimum output
positions of its three channelsin the first few minutes of operation. Clearly, if the magnetometer
does not do this, the channel biases will not be adjusted properly, unless they are correctly
estimated from the start. Thisis clearly what happened during the author's attempts to use the
MagSelfCal function, as described above. The data files contain insufficient datato set all expected
channel bias voltages properly, and the resulting azimuth estimates suffered.

This realization has led the author to the conclusion that some method must be used to
accurately estimate the initial expected bias and peak-to-peak voltages. Since this cannot be done
automatically, some method of human-assisted calibration must be performed. McGhee believes

that thisis as simple as manually positioning the magnetometer, watching for the maximum and

46

minimum voltages of each channel, and setting the initial bias and peak-to-peak voltages for each

channel using the following equations:

(5.17)

(5.18)

Setting theinitial vauesin this manner should alow the system to initially operate properly
and should allow the MagSelfCal function to properly adjust the expected bias voltages for
calibration during day-to-day operation.

F. SUMMARY

Comparison of the plots presented in Appendix A indicates that the author's magnetometer
simulation accurately mimics the operation of athree-axis fluxgate magnetometer. Thus, the
author's magnetometer can be used in the smulated Artificial Vestibular System (AVS) to provide
the smulated voltage outputs of a magnetometer attached to an object in avirtual environment. The
results of the smulated AV S may then be used to provide proof-of-concept for the design of the
physical AVS.

The study of the datain Appendix C shows that the author's azimuth estimation routine
gives areasonably accurate estimate. Further experimentation with additional magnetometer data
indicating more reasonable initial expected bias and peak-to-peak voltages should give a better
azimuth estimate. Additionally, further work on self-calibration is necessary before 15 of the AVS
sensors packages can be used to track the human body. It is the author's opinion that manual
calibration of all sensors before each useisnot feasible. Thisisleft for future work.

Whileit is possible to track the human body and produce Euler orientation vectors, alone,
for each of the participant's body parts, a question remains. Does tracking three DOF for each

body part provide enough information for the host computer to synthesize a human body model for

47

insertion into avirtual environment? The next chapter discusses the author's development of the

"orientation-only" articulated body model.

48

VI. VALIDATION OF 'ORIENTATION-ONLY"'
ARTICULATED BODY MODELING

A. RATIONALE BEHIND 'ORIENTATION-ONLY' MODEL

The use of amotion capture system to track the Human body as an interface paradigm
resultsin a stream of data (normally orientation and/or position data) entering the host computer
system, indicating to the system the actions of the user. This datais used by the computer system
to manipulate the virtual world in away which corresponds to the actions of the user. If thisis
done properly, it can significantly contribute to suspending the disbelief of the user, or make them
feel more like they areinteracting with area environment.

Part of the challenge of suspending the disbelief of the user liesin how the user visualy
perceives objectsin the virtual environment, especialy him or herself and other animated
participants. Typically, the user and other participants are represented in the virtual world by what
iscurrently being called an "avatar". This avatar becomes the alter-ego of the user for the duration
of the user's stay in the virtual world and is the visual representation of the user which is presented
to other participants.

The avatar may take any visual form that the system will graphically support. Itisamost
always composed of multiple rigid body segments, joined together in some fashion, which are
allowed to beindividually positioned and oriented for animation purposes. Aslong asthe
segments remain joined together and are animated in ways that are expected by other participants,
the avatar will pass as abelievable entity in the virtual environment. Bodies composed of joined
rigid body segments are typically called "articulated" bodies.

Several paradigms exist for articulated body modeling in computer graphics. [BADL93]

The differing methods of positioning and orienting the body parts is what typically separates these

49

paradigms. Two differing schools of thought will be presented: Orientation-position method

using inverse kinematics and orientation-only method.

1. Orientation-Position (Inverse Kinematics) method

One method of articulating rigid body segments involves the use of both orientation and
position information to animate the rigid body segments of an articulated body. This method is
typicaly utilized when the designer wishes to minimize the number of tracking sensors mounted on
the user's body, or desires to minimize the amount of physical motion capture hardware to be
used. This can have the effect of minimizing the cost of the motion capture system.

However, this cost advantage does not come without a price. The price paid is an increase
in the complexity of the articulated body modeling software used. This software must now fill in
the gaps in the motion capture data stream, generating orientation and position data for the user's
body parts which are not tracked. The algorithms used to generate thisinformation are collectively
called inverse kinematics.

A typical configuration for minimizing the number of sensors used, when tracking the
human body, is shown in Figure 4. [BADL93] Badler's system involves the use of four
Polhemus el ectromagnetic receivers tracking in both position and orientation. This datais acquired
at arate of approximately 120 samples per second and is transmitted to the host computer system
for articulated body animation.

Figure 4 shows that only the user's hands, head and upper body are tracked, leaving the
orientation of the upper and lower arms to be determined using inverse kinematics. [BADL93 and
CRAI89] Simply described, inverse kinematics involves the mathematical estimation of the

orientation of un-tracked rigid body segments adjoining two tracked segments.

50

Figure4: Minimal Tracking Sensor Configuration [BADL 93]

In the case of Figure 4, assuming the motion capture system is capable of determining both

position and orientation, the following are known quantities:

- position and orientation of the upper torso
- position and orientation of the head
- position and orientation of both hands

Thus, by assuming that these four tracked segments are absolutely rigid, the following

information is known by reference:

- position of the shoulders
- position of both wrists

51

From thisinformation, inverse kinematics is used to determine the following by numerical

estimation techniques:

- orientation of the upper arms
- orientation of the lower arms

The solution to this problem, however, is not unique because there is not enough
information to completely specify the position of the elbow. It can lie anywhere on acircle whose
perpendicular axisisthe line between the shoulder and wrist positions. To determine the position
of the elbow, empirical research on human kinematicsis used to predict the most likely position of
the elbow, given the available information. This method almost always gives areasonable
solution, but it may not give the correct solution. The application will dictate whether thisis
acceptable or not.

One problem with using inverse kinematicsis its computational complexity when compared
with asystem that tracks all of the user's body parts. Without position and orientation tracking
information available for al body parts, the missing data must be determined using numerical
methods and prediction. This can take a significantly longer time than tracking all of the body parts
directly. Thus, it isthe author's opinion that this method would result in alower animation frame
rate. Verification of this conjecture is|eft for future work.

Another problem with using both position and orientation information to synthesize an
articulated body is the inherent inaccuracy of position tracking compared to orientation tracking.
[SKOP96] During hiswork with Polhemus' sensors, Skopowski discovered that the position
data from the system was of significantly lower quality than the orientation data. He hypothesized
that this was due to the method in which these sensors accomplished position determination.
Regardless of the reason, use of this datain the inverse kinematics determination of rigid body
segment orientation resultsin inherent errors.

Along the same lines, image-based systems can be used to obtain reliable position data of

multiple rigid body segments, but cannot be used for reliable determination of their orientation.

52

[FREY95] Thus, inverse kinematics will produce errors using data from this motion capture
system as well.

The author has discovered that there is no motion capture system currently available which
can reliably determine the position and orientation of enough independent objectsto be used for
tracking a 15 rigid segment articulated body (i.e. ahuman). [FREY95] Thus, either some reliable
means of determining both position and orientation must be developed, or another articulated body
modeling scheme must be used. In the author's opinion, the current methods of motion capture are
far from being usable for fully tracking a human body. For this reason, the author has developed

the Orientation-only articulated body model.

2. Orientation-Only Method

When all of the user's body parts are tracked individually, the orientation-only method may
be used. This method does not involve the use of inverse kinematics. Thus, itisless
computationally complex and, it has been the author's experience that a higher animation frame rate
results. In addition, since only orientation datais required to fully synthesize an articulated body
model, the demands on the motion capture system are not as extreme.

When only orientation datais required, electromagnetic motion capture systems are capable
of providing real-time, consistent data for the synthesis of an articulated human body in avirtual
environment. However, it isthe author's opinion that, due to their inherent limitations (limited
range, tether, interference), electromagnetic systems are not sufficient for human body tracking for
virtual environment interface applications. The Artificial Vestibular System (AVYS) isbeing
developed for thisreason. It isthe author's opinion that the AV S will far surpass the capabilities
of electromagnetic tracking systems.

To support the orientation-only capabilities of the AV'S, the author realized that a method of
synthesizing articulated bodies using only orientation data would have to be developed. For this

reason, the author designed and coded the Hercules Articulated Body Modeling System.

53

B. HERCULES ARTICULATED BODY MODELING SYSTEM

The Hercules Articulated Body Modeling System was originally intended to provide a
means of testing the AV S, once the system was available, but has grown into an entity itself. The
basic goal of the system isto provide an application programmer's interface (API) which would
make it ease for the application programmer (AP) to synthesize and animate articul ated body
structures. In addition, to allow testing of the AV'S, the API provides the capability of using Euler
angle or joint angle data from a motion capture system to orient each of the body's parts
(segments). The Hercules C++ headers are included in Appendix D with descriptions of their use
in Appendix E.

The basic premise of the Hercules system isthat all articul ated bodies may be represented
by a hierarchy of individual segments, beginning with a unique root segment. Each segment relies
on its parent for its global spatial positioning (3 DOF) and is provided its orientation (3 DOF) by
the AP. No parent segment knows anything about its child segments, but every child segment
knows which segment is its parent.

An articulated body is constructed by defining all of its individual segments asRigidBody
class objects. Each object is provided its physical appearance by defining alist of verticesin its
local coordinate system and defining alist of polygons based on these vertices. For this purpose,
the author has created both Point (vertex) and Polygon classes. The Point and Polygon objects
added to the segment's vertex and polygon lists using the AddVertex and AddPolygon methods,
respectively.

The object isthen given avisual appearance by assigning to it amaterial definition
consisting of the standard OpenGL materia specification of its ambient, diffuse, specular and
shininess characteristics. The AP aso provides the drawing method for the segment, selecting

from wireFrame, flatShaded, and smoothShaded.

Once the physical appearance of the segment has been defined, the segment must be
attached to its parent segment so that the Hercules API will know how to obtain its global spatial
positioning information. If the segment is not joined to a parent, the AP must always provide its
global spatial positioning information manually using theSetPostur e method with 6 degrees of
freedom. Once the segment has been joined to its parent, the Hercules API will always obtain its
global spatia positioning information from the parent segment. The AP joins the segment to its
parent by calling the SetAttachmentPoint method with a pointer to the segment to become the
parent, the vertex within the parent at which the child segment will be attached, the attachment
method (absolute or relative) and the axes of interest (if relative attachment is specified).

A RigidBody object isaways rotated about its local origin by the Hercules API. When it
is attached to a specific vertex of another segment, the origin of the child is aways placed at the
global spatial position of the specified vertex of the parent. 1f a segment is the root segment, by
definition, it is not attached to another segment and must, therefore, always be provided its global
gpatia position and orientation by the AP.

An attachment method of absolute will allow a child segment to be oriented using global
Euler angles regardless of the orientation of the parent. An attachment method of relative will
allow the child segment to be oriented using Euler angles relative to the coordinate system of the
parent. Essentialy, relative attachment emulates the use of joint angles for orientation. The child
segment is oriented relative to the parent, rather than relative to the world coordinate frame.

When relative attachment is used, the AP must tell the Hercules system which axes are
relevant. For athree DOF joint, azimuth, elevation and roll are passed as parameters to the
SetAttachmentPoint method during joining. For aone DOF joint, only one of the three
HGRotAxisDesignator parametersis passed.

Once the body has been entirely defined, the AP must provide the spatial position and
orientation (6DOF in global world coordinates) of the root segment, and the orientation of each
child segment (3DOF). Thisisdone by calling the SetPostur e method of each segment with the
appropriate data.

55

Once oriented, the Transform method of each segment must be called in hierarchical
order. Thisisto ensurethat body is properly positioned and oriented according to itslocation in
the body hierarchy. In other words the Transform method must be called for the root segment
first, followed by each child of the root, followed by each grandchild, etc. In genera, a parent
must be transformed before its children.

Once transformed, the segments may be drawn one at atime by calling theRender Obj ect
method of the defined ViewPoint object with a pointer to each Rigidbody to be drawn. The
Hercules API will then render the appropriate view of each segment according to its position and
orientation and the position and orientation of theViewPoint object. The OpenGL API will render
each segment with the appropriate appearance, lighting, shading and hidden surface elimination as
specified by the AP. [OPEN94]

An example application of the Hercules API can be found in Appendix F. This application
consists of afifteen-segment articulated human body. The body parts are constructed in thefile
HumanBodyParts.cpp. Thisfile, along with HumanBodyParts.h, constructs a class definition for
each of the body parts and codes the UpdatePosture method with a simple perambulation
algorithm. This motion algorithm uses various sinusoids to produce arealistic walking or running
motion to the human figure. The files HumanBody.cpp and HumanBody.h then define a human

body class which gives central access pointsfor al of the human body parts functionalities.

C. SUMMARY

The author has shown, through C++ articulated body modeling code, that an entire human
body can be built and animated using only three Euler angles for each body part. Thisresult
eliminates the need for human body motion capture systems to track the position of each body part.
Thus, motion capture systems need only track 3 DOF orientation for each body part. The host
computer system can then produce a human body model, representing the human body being

tracked, using only orientation data to position al of the body parts.

56

The Hercules Articulated Body Modeling API can be used to build and manipulate any
articulated body. The body can be built from raw vertex and polygonal data or from pre-built
primitives included in the Hercules system. It can then be animated using only 3 DOF orientation

data (either Euler angles or joint angles) for each body part.

Figure5: Hercules-- Hercules APl Sample Application

57

58

VIl. SUMMARY, CONCLUSIONS AND FUTURE WORK

A. SUMMARY AND CONCLUSIONS

All things considered, it is apparent that the world is moving into a time when the mouse
and keyboard will no longer suffice as the predominant method for interfacing with synthetic
environments and virtual worlds. Some method must be devel oped for interfacing human
participants to the computer systems which generate these synthetic environments. The author
believes that the new synthetic environment human interface paradigm will include some type of
body tracking (motion capture) system for sensing the user's actions.

Thisthesis has discussed the various systems which are currently available to perform
motion capture functions. Of these, the author has shown electromagnetic systems to be the only
existing systems capable of reliable, accurate, real-time human body motion capture. [FREY 95]
However, these systems are encumbering to the user, spend too much time attempting to track
objectsin 6 DOF (position and orientation) when their position tracking leaves much to be desired
[SKOP96], tether the user to the computer system, and are very susceptible to interference in the
local vicinity.

The author has aso shown in thisthesis that articulated body modeling in a synthetic
environment can be accomplished using only 3 DOF for each body part. Thisrevelation alows
motion capture systems to track only 3 DOF orientation for each body part and still provide the
necessary human interface information. Thus, position tracking, which has typically been the least
stable for electromagnetic trackers [SKOP96], is not necessary for synthetic environment
interfaces.

Knowing that only orientation information is required allows motion capture sensors to be

made smaller and lighter, thus reducing encumbrance of the user. These sensors can then be

59

coupled with a system which requires no tether to the computer system, further reducing the user's
movement restrictions.

While electromagnetic systems are good for motion capture, they suffer from significant
drawbacks which render them inadequate for certain motion capture applications (i.e. long-distance
motion capture and unrestricted freedom of movement). The primary reason behind thisis that
el ectromagnetic motion capture systems are sourced systems, meaning that they require an
externally generated signal sourceto function. This source allows the electromagnetic systems to
be subject to interference and range restrictions.

For this reason, the author has proposed a human body motion capture system (the AVYS)
based on inertial sensors, which requires no artificial signal source for motion capture. Thiswould
allow auser wearing the AVS unlimited freedom of movement and would allow the system to be
virtually free of external interference. The user would no longer be tethered to the computer
system and there would be virtually no range restrictions.

McGhee [MCGH95] and Foxlin [FOXL95] have shown that orientation-only motion
capture using inertial sensorsis both stable and reliable. Their methods of extracting orientation
information from a combination of alinear accelerometers and angular rate sensors has proven to
provide reliable orientation estimates. The only drawback of this method involves the angular rate
sensor bias-generated rotational drift about the local vertical (azimuth drift). This discovery
pointed out the need for incorporation of athird sensor which had a sensitive axis which was non-
collinear with the local vertical.

To compensate for drift around the local vertical, the author and M cGhee selected a three-
axis flux-gate magnetometer. The magnetometer is sensitive to the Earth's magnetic field which is
only collinear with the local vertical in the vicinity of the Earth's magnetic poles. Thus, for most
regions of the Earth, a flux-gate magnetometer can be successfully used to compensate for azimuth

drift.

60

Thisthesis has shown that a three-axis flux-gate magnetometer can be used to estimate the
azimuth orientation of abody. This azimuth estimate can then be used to stabilize the entire inertial

sensor package for rotational drift about the local vertical.

B. FUTURE WORK

While this thesis has shown that a stable and reliable 3 DOF orientation estimate can be
obtained using a combination of inertial sensors, thereis still much work to be done on the subject.

First, it isknown that the system of orientation estimation used by McGhee [MCGH95]
and described in Chapter IV fails when the elevation of the body being tracked reaches+90°. This
is dueto the fact that the body-to-Euler angular rate transformation matrix (T-matrix in Figure 2)
becomes singular there. The problem hereisthat an attempt is being made to determine the Euler
angles of atracked body. When the body reaches an elevation of £90°, only the sum of azimuth
and roll is defined; they are not individually determinable in this fashion.

To overcome this difficulty, atracking method using quaternion filters is needed.
Quaternions are not subject to singularities, so their use would alow unlimited tracking of a body
with no limits on orientation. [COOK92] The development of the quaternion filter is left for future
work.

The author has run various simulations of different aspects of the AV S and there has been
much empirical research done by McGhee et. a. and Foxlin on inertial sensor orientation
estimation in general. However, a sensor which will track the orientation of abody in 3 DOF at
any orientation has not yet been constructed. The author is convinced that unlimited orientation
tracking using inertial sensors, as described in thisthes's, is possible and physically redlizablein
the next few years.

Thelogical course of action at this point isto begin specification of an inertial sensor
package consisting of athree-axis linear accelerometer / angular rate sensor / flux-gate

magnetometer combination. This sensor package should consist of micro-machined sensors and

61

application specific integrated circuits to minimize the encumbrance to the user and to minimize the
amount of datato be transferred out of the sensor package.

Once a sensor package has been synthesized, a system must be designed which is capable
of processing the data from the inertial sensor packages in real-time (a minimum of 120 Hz) and
providing it to the host computer system in way that is not encumbering to the user. In other
words, the entire AV'S, with the exception of the computer system interface hardware, must be
body-mounted. This obviates the need for light-weight application specific electronicsto do the
orientation data processing on the user's body. The only data that should be sent from the body-
mounted electronicsis a stream of data packages, each containing the 3 DOF orientation estimate
for al of the user's major body parts.

It isthe author's opinion that an inertia tracking system like the AV S would uniquely
satisfy the upcoming requirement of human body motion capture for the next synthetic
environment interface paradigm without the drawbacks of the currently available motion capture

systems.

62

APPENDIX A. PLOTS OF MAGNETOMETER OUTPUTS

The following plots are combinations of the three output channels of the flux-gate
magnetometer. Thefirst plot on each pageis of data obtained during the bench testing of the real
magnetometer. The second plot on each pageis of data obtained by running the author's
magnetometer simulator, described in Chapter V, with the same conditions as the real
magnetometer data was obtained under (i.e. the same fixed elevation and roll).

Note that the curves are not labeled as to which magnetometer axis they represent. Thisis
irrelevant, as the ssmulation can be made to produce any of the curves for any axis of the
magnetometer. The important information isthat the curves are similar in shape and phase

differential for the given set of elevation and roll conditions.

63

¢, Ral =0°

Figure A.1 -- Real Magnetometer Data for Elevation

- 0€E

- 00€

F0.L¢

-0v¢

-0T¢

- 08T

06T

-0C1

06

09

F0€

3.5 1

3 +

2.5 F
2 1

¢, Roll =0°

Figure A.2 -- Smulated M agnetometer Data for Elevation

-0€E

- 00¢€

F0.¢C

- 0v¢

-0T¢

- 08T

- 06T

-0¢T

- 06

09

-0¢€

Figure A.3 -- Real Magnetometer Data for Elevation = +30°, Roll = 0°

3.5 +

2.5 4

1.5 /\

0.5 +

Figure A.4 -- Smulated M agnetometer Data for Elevation = +30°, Roll = 0°

3.5 1

2.5 4

330+

65

Figure A.5 -- Real Magnetometer Data for Elevation = +45°, Roll = 0°

Figure A.6 -- Smulated M agnetometer Data for Elevation = +45°, Roll = 0°

3.5 +

2.5 A

1.5 f

330+

66

Figure A.7 -- Real Magnetometer Data for Elevation = +60°, Roll = 0°

35 /\

2.5 4
1.5+

0.5 +

330+

Figure A.8 -- Smulated M agnetometer Data for Elevation = +60°, Roll = 0°

3.5 -

2.5 A

1.5+

330+

67

¢, Ral =0°

Figure A.9 -- Real Magnetometer Data for Elevation

-0€E

- 00€

-0L¢

-0v¢

-0T¢

- 08T

- 0GT

- 0C1

06

09

-0€

3.5 1

2.5 A

2 +

1.5+

Figure A.10 -- Smulated Magnetometer Data for Elevation = -60°, Roll = 0°

-0€E

- 00¢€

F0.¢

-0v¢

-0T¢

- 08T

- 06T

-0CT

06

09

-0¢€

68

Figure A.11 -- Real M agnetometer Data for Elevation = -45°, Roll = 0°

-0€E

- 00€

-0.L¢

- 0v<¢

-0T¢

- 08T

- 0GT

- 0C1

06

09

-0€

3.5 1

2.5 A

2 +

1.5+

45, Roll =Q°

Figure A.12 -- Smulated M agnetometer Data for Elevation

-0€E

- 00¢€

F0.¢

-0v¢

-0T¢

- 08T

- 06T

-0CT

06

09

-0¢€

69

Figure A.13 -- Real M agnetometer Data for Elevation = -30°, Roll = 0°

-0€E

- 00€

-0.L¢

- 0v<¢

-0T¢

- 08T

- 0GT

- 0C1

06

09

-0€

3.5 1

2.5 A

2 +

1.5+

Figure A.14 -- Smulated Magnetometer Data for Elevation = -30°, Roll = 0°

-0€E

- 00¢€

F0.¢

-0v¢

-0T¢

- 08T

- 06T

-0CT

06

09

-0¢€

70

Figure A.15 -- Real M agnetometer Data for Elevation = @, Roll = +30°

Figure A.16 -- Smulated M agnetometer Data for Elevation = @, Roll = +30°

3.5

2.5

1.5

330+

71

Figure A.17 -- Real M agnetometer Data for Elevation = @, Roll = +45°

Figure A.18 -- Smulated M agnetometer Data for Elevation = @, Roll = +45°

3.5 1

2.5t

330+

72

Figure A.19 -- Real M agnetometer Data for Elevation = @, Roll = +60°

35 /’\/

15 +

05 +

0
30 4
60 1

Figure A.20 -- Smulated M agnetometer Data for Elevation = @, Roll = +60°

3.5 -

2.5 T

1.5+

330+

73

74

APPENDIX B. MAGNETOMETER SIMULATION CODE

The following C++ code listings contain the majority of the source code necessary to
produce a suitable magnetometer simulation and magnetometer azimuth estimates as described in
Chapter V.

Section A contains the code for the magnetometer simulation. Note that the code for the
magnetometer smulation is actually code for smulation of an entire inertial sensor package as
described in Chapter 1V, including athree-axis linear accel erometer, athree-axis angular rate
sensor and the three-axis magnetometer.

Section B contains the code for magnetometer azimuth estimation. Note that the azimuth
estimation routines are set up to use real magnetometer data from an input file rather than data from
the smulated magnetometer of Section A. The author has run the azimuth estimation routines with
simulated dataaswell. The estimated azimuth results were exactly equal to the true azimuth (error
= 0) dueto the consistency of the smulated data. Also note that most of the driver code (such as
windowing routines) has been stripped out of the code for brevity. The remaining codeis that
which isdirectly responsible for initialization and azimuth estimation cal culations.

The C++ header files for supporting graphics and animation routines may be found in
Appendix D. The descriptions of these support routines may be found in Chapter VI. The
supporting code and libraries, in their entirety, are available on request from the NPSNET
Research Group at the Naval Postgraduate School.

75

A. Magnetometer Simulation Code

1. File HGInertialSensor.h

/******************

Hd nertial Sensor.h -- Sinulated Inertial Sensor class
Witten by WI Frey

*******************/

#pragma once

#i ncl ude <fp. h>

#i ncl ude "HX ypes. h"

#i ncl ude "H@vatri x. h"

#i ncl ude "HGoi nt. h"

#i ncl ude "HGR gi dBody. h"

/] inertial constants

const float gravity = 9.81; //
const float Magnetomet er PToP =
const float MagnetometerBias =
const float bFi eldD pAngle = -1.0472; // radians
const float bFi el dDevAngle = 0; // radians

neters per sec squared
1. 6;
2.5;

// sensor characteristics

const float LinearAccelBias =0.0; // ¢

const float LinearAccel RvBnoise = 0.0; // g RVB

const float Angul arRatelnstability = 0.0; // degrees per hour
const float Angul ar Rat eRvVBnoi se = 0.0; // degrees RVB

/!l Inertial Sensor Package data structure
struct HA Sensor Dat aType

HGPoi nt Angul ar Rat e;
HGPoi nt Li near Accel ;
HGPoi nt Magnet onet er ;

H

/! Simulated Inertial Sensor d ass
cl ass H3d nerti al Sensor

public:

HA nerti al Sensor (HGR gi dBody *initBody, int initPointNun;

HJ Sensor Dat aType *Pol | (float tinme); // provide simul ated sensor outputs
HGPoi nt *CGet Eart hMagFi el d() {return &mragFi el d;}

HGR gi dBody *Get Body() {return body;}

HA Sensor Dat aType *GetQurrentData() {return &urrent State;}

~HG nerti al Sensor () {}

76

private:

HGR gi dBody *body; /] attached to whi ch body

i nt bodyPoi nt Num // attached where on body

// Earth's nag field data

HGPoi nt nmagFi el d;

/] last-state variabl es

short initState; [/ initialization state of sensor (= 0,1, 2)
HGSt at e6f | ast Post ur e; [/l last _sensor_ position and orientation
HGPoi nt lastVelocity; [// last _sensor_ linear velocity

f1 oat lastTimeStanp; // last timestanp

HA Sensor Dat aType currentState; // current sensor outputs

77

2. File: HGlInertialSensor.cpp

/**********

Hd nertial Sensor.cpp -- Sinmulated Inertial Sensor class
Witten by WI Frey

***********/

#pragna once
#i ncl ude "Hd nerti al Sensor. h"

Hd nerti al Sensor:: Hd nerti al Sensor (HGR gi dBody *i ni t Body, int initPointNun
{

Havatri x bFi el dDevMatri x(4,4), bFieldD pMatrix(4,4);

HGPoi nt rawvagFi el d;

f1 oat cdip, sdip, cdev, sdev;

body = i nit Body;
bodyPoi nt Num = i ni t Poi nt Num

[/l set sensor state so that first two polls initialize all variables
initState = 0;

/l set rawearth nag field vector
rawMagFi el d. x =
rawMagFi el d. y
rawMagFi el d. z

1 O. o

'(Magnet onet er PToP / 2);

/1 calculate dip and devi ati on conpensation natrix

cdi p = cos(bFi el dD pAngl e);
sdi p = sin(bFi el dD pAngl e);
cdev = cos(bFi el dDevAngl e);
sdev = sin(bFi el dDevAngl e) ;

bFi el dDevMat ri x. Set H enent (0, O, cdev) ;
bFi el dDevMat ri x. Set El enent (0, 2, - sdev) ;
bFi el dDevMat ri x. Set E enent (2, 0, sdev) ;
bFi el dDevMat ri x. Set El enent (2, 2, cdev) ;

bFi el dD pMatri x. Set E enent (1, 1, cdi p);
bFi el dD pMatri x. Set H enent (1, 2, sdi p);
bFi el dDi pMatri x. Set H enent (2, 1, -sdi p);
bFi el dD pMatri x. Set EH enent (2, 2, cdi p);

/Il calculate earth-fixed magFi el d vector
magFi el d = rawMagFi el d * (bFi el dDevMatri x * bFi el dD pMatri x);

78

[/l calculate linear accel, angular rate, magnetoneter outputs
/] returns pointer to current state if sensor initialized properly
/1 returns null pointer otherw se
HJ Sensor Dat aType *Hd nerti al Sensor:: Pol | (float tine)
{
fl oat deltaTi ne;
HGVat ri x bodyMatri x(3, 3);
HGVatri x tMatrix(4,4);
HGSt at e6f *post ure = body- >Get Post ure() ;
HGPoi nt *Sensor Posit = body- >Get TVer t ex(bodyPoi nt Nun)j ;
HGPoint linVelocity, |inAccel, angVel ocity;

if (initState '=0) // at |least one Poll has been done

[/l calculate delta tine
deltaTime = tinme - | astTi neStanp;

[/ calculate earth-fixed linear velocity vector

linVelocity.x = (SensorPosit->x - |astPosture.xp) / deltaTine;
linVelocity.y = (SensorPosit->y - |astPosture.yp) / deltaTine;
linVelocity.z = (SensorPosit->z - |astPosture.zp) / deltaTine;

[/ calculate earth-fixed angul ar velocity vector

angVel ocity.x = (posture->el - lastPosture.el) / deltaTi ne;
angVel ocity.y = (posture->az - |astPosture.az) / deltaTine;
angVel ocity.z = (posture->rl - lastPosture.rl) / deltaTire;
if (initState '=1) // at least two Polls have been done
/1 calculate earth-fixed |inear accel eration vector
linAccel .x = (linVelocity.x - lastVelocity.x) / deltaTing;
linAccel .y = ((linVelocity.y - lastVelocity.y) / deltaTine) - gravity;
linAccel .z = (linVelocity.z - lastVelocity.z) / deltaTing;

[/ transformearth-fixed vectors into body-fixed vectors
bodyMat ri x = (body->GetHvatri x())->RotationMatrix4();
tMatrix = bodyMatri x. Transpose() ;

current State. Li near Accel = linAccel * tMatri x;

current State. Magnetormeter = magField * tMatrix;

// add nagnet onet er bi ases

current St at e. Magnet onret er. x += Magnet onet er Bi as;
current State. Magnetonet er.y += Magnet onet er Bi as;
current St at e. Magnet onet er. z += Magnet onet er Bi as;

/1 cal cul ate body-fixed pitch angul ar velocity
current State. Angul arRate. x =
angVel ocity.x * cos(posture->rl) +
angVelocity.y * cos(posture->el) * sin(posture->rl);

/1 cal cul ate body-fixed azi muth angul ar velocity
currentState. Angul arRate.y =
angVel ocity.y * cos(posture->el) * cos(posture->rl) -
angVel ocity.x * sin(posture->rl);

79

[/ calcul ate body-fixed roll angular velocity
currentState. Angul arRate.z =
angVelocity.z - angVelocity.y * sin(posture->rl);

}

[/l set 'last' variables with current val ues
| ast Post ure. xp = Sensor Posi t - >x;

| ast Posture.yp = Sensor Posit ->y;

| ast Post ure. zp Sensor Posi t ->z;

| ast Posture. az = post ure->az;

| ast Post ur e. el post ur e- >el ;

| ast Posture.rl posture->rl;

if (initState !'= 0)

lastVelocity.x = linVelocity.x;
lastVelocity.y = linVelocity.y;
lastVelocity.z = linVelocity. z;

}

lastTimeStanp = tine;
if (initState < 2)

{

++initState; // update initialization state variable
return (HA Sensor Dat aType *)0; // return NULL pointer if not stable

return &urrent State;

80

B. Magnetometer Azimuth Estimation Code

1. File: SensorTest.cpp

/***************

SensorTest.cpp -- Azimuth estination test driver
Witten by WI Frey

*****************/

/] magnet onet er bi ases
fl oat MagnetoneterBias = 2.5; // volts
HGPoi nt eart hMagFi el d, magBi as, maghMax, magM n;

/1 gl obals

float el =0, rl=0;

fl oat est Azi nut h;

float tine, nmagX, nagY, nagZ
int duration, count;

voi d I ni t Magnet onet er ()
{
HAvatri x bFi el dDevMatrix(4,4), bFiel dD pMatrix(4,4);
HG&Poi nt rawvagFi el d;
f | oat cdip, sdip, cdev, sdev;
f1 oat nagE;

[/l set raw earth mag field vector
rawvagFi el d. x
rawvagFi el d. y
rawMagFi el d. z

11
0;
0

/1 calculate dip and devi ati on conpensati on matrix

cdi p = cos(bFi el dD pAngl e);
sdi p = sin(bFi el dD pAngl e);
cdev = cos(bFi el dDevAngl e);
sdev = sin(bFi el dDevAngl e);

bFi el dDevMat ri x. Set El enment (0, 0, cdev) ;
bFi el dDevMat ri x. Set El erment (0, 1, - sdev) ;
bFi el dDevMat ri x. Set H enent (1, 0, sdev) ;
bFi el dDevMat ri x. Set H enent (1, 1, cdev);

bFi el dD pMatri x. Set El enent (0, 0, cdi p);
bFi el dD pMatri x. Set E enment (0, 2, sdi p);
bFi el dD pMatri x. Set El enment (2, 0, - sdi p) ;
bFi el dD pMatri x. Set H enent (2, 2, cdi p) ;

/1l calculate earth-fixed nagFi el d vector
earthMagFi el d = (bFi el dDevMatri x * bFiel dDi pMatrix) * rawvagFi el d;

/1 normalize Earth-fixed magfield vector

magE = sqgrt((earthMagFi el d. x * earthMagFi el d. x) +
(earthMagField.y * earthMagField.y) +
(earthMagFi el d. z * earthMagFi el d. z));

81

earthMagFi el d. x /= nma
earthhvagFi el d.y /= nagE
earthivagFi el d. z /=

// set initial magnetoneter calibration data
nmagBi as. x = Magnet onet er Bi as;

nmagBi as.y = Magnet onet er Bi as;

nmagBi as. z = Magnet onet er Bi as;

magM n. x = nagBi as. x - (MagnetoneterPToP / 2.1);
magMn.y = nagBias.y - (MagnetoneterPToP / 2.1);
magM n.z = nmagBi as.z - (MagnetoneterPToP / 2.1);
maghax. X = magBi as. x + (Magnet oret er PToP / 2.1);
maghax.y = magBi as.y + (MagnetoneterPToP / 2.1);
maghax.z = nmagBi as. z + (Magnet orret er PToP / 2.1);
return;

float EstinmateAzinmuth(float inH, float inR,

{

float inMagX, float inMagY, float inhag2)

Havatrix el R(4,4), rlR(4,4);

HG&Poi nt nor mvagFi el d, transMagFi el d;
fl oat magX, magyY, magZ, magM

float sinPsi, cosPsi;

float cel = cos(inH);
float sel = sin(inA);
float crl = cos(inR);
float srl =sin(inR);

/] automatically adjust expected rmagnet oreter biases
/1 not being used due to current inadequacies
/1 MagSel f Cal (i nMagX, inMagY, inMag2);

/1 build Rxy transformation matrix for known el and rl
el R SetH erent (0, 0, cel);
el R SetE enent (0, 2, sel);
el R SetEH enent (2, 0, -sel);
el R SetH enent (2, 2, cel);
rlR SetH enent (1, 1,crl);
rlR SetH enent (1, 2,-srl);
rlR SetH enent (2, 1,srl);
rlR SetH ement (2, 2,crl);

/1 acquire, renove bias fromand nornalize

/1 simul ated nagnet oneter data

/1 Note that magX and magZ have been inverted to account
/1 for actual magnetoneter axes differences

magX = - (i nvMagX - nagBi as. x) ;

nagY = i nMagY - nagBi as. y;

magZ = -(invagZ - nagBias. z);

magM = sgrt ((nmagX * nagX) + (nmagY * nagY) + (nmagZ * nagZ));

82

nor mvagFi el d. x
nor nivagFi el d. y
nor nivagFi el d. z

magX / magM // bl in the derivation
magY / magM // b2
magZ / magM // b3

/1 conpute Earth-fixed nmagnet omet er vector
transhMagField = (elR* rIR * normMagField; // min derivation

/] calcul ate estinated azi nuth
sinPsi = ((transMagFi el d.y * earthMagFi el d. x) -
(transMagFiel d. x * earthMagField.y)) /
((transMagFi el d. x * transMagFi el d.x) +
(transMagField.y * transhagFi el d.y));
cosPsi = (earthMagFi el d.x / transiagField.x) -
((transMagFi el d.y / transhMagFiel d.x) * sinPsi);

return (float) atan2(sinPsi, cosPsi);

/] autonmatically calibrate expected rmagnet oreter biases
voi d MagSel f Cal (float i nMagX, float inMgyY, float inhMag2)

{

short recal =0;

/! check for X bias recal
if (inMagX > magMax. x)
{

maghax. x = i nMagX;
recal = 1;

}
if (inMagX < magM n. x)

magM n. x = i nMagX;
recal = 1;

}
if (recal)

magBi as. x = (magM n. x + maghMax. x) [/ 2;
recal = 0;

}

/! check for Y bias recal
if (inMagY > magMax.y)
{

maghax.y = i nMagy,
recal = 1;

}
if (inMagY < magMn.y)
magM n.y = i nMagy;
recal = 1;

}

if (recal)

83

magBias.y = (magM n.y + maghax.y) / 2;
recal = 0;

}

/! check for Z bias recal
if (inMagZ > magMax. z)
{

maghax. z = i nMagZz;
recal = 1;

}
if (inMagZ < magM n. z)
magM n. z =i nMagZz;
recal = 1;

}

if (recal)
magBi as.z = (magM n. z + maghMax. z) / 2;

return;

APPENDIX C. AZIMUTH ESTIMATION SIMULATION DATA

The following pages of data were obtained by running the azimuth estimation simulation
code found in Appendix B with real magnetometer data obtained as described in Chapter VI. Note
that the azimuth estimation routine actually produces azimuths between -180° and +180°. The
estimated azimuth data in the following tables has been modified for ease of comparison. The data
shown includes the true azimuth, the X-, Y - and Z-axis expected magnetometer bias voltages, the
resulting azimuth estimate and the azimuth estimation error. The Average Error valueis obtained

by averaging the absolute value of all azimuth estimation errors.

TableC.1-- Elevation = 0°, Roll =0°

& biasX biasY biasZ etAz error

0 2.527 2.527 2.527 358.634 -1.36554
15 2.527 2.527 2.527 12.5582 -2.44182
30 2.527 2.527 2.527 28.1156 -1.88437
45 2.527 2.527 2.527 42.2515 -2.74846
60 2.527 2.527 2.527 57.2764 -2.7236
75 2.527 2.527 2.527 72.2381 -2.76186
90 2.527 2.527 2.527 86.2813 -3.71867
105 2.527 2.527 2.527 101.066 -3.93399
120 2.527 2.527 2.527 115.865 -4.13542
135 2.527 2.527 2.527 130.187 -4.81306
150 2.527 2.527 2.527 145.583 -4.41736
165 2.527 2.527 2.527 162.454 -2.54573
180 2.527 2.527 2.527 178.85 -1.14983
195 2.527 2.527 2.527 194.664 -0.336151
210 2527 2.527 2.527 210.834 0.83432
225 2527 2.527 2.527 225.149 0.149078
240 2527 2.527 2.527 240.133 0.133072
255 2.527 2.527 2.527 254.46 -0.539536
2710 2527 2.527 2.527 269.038 -0.96225
285 2.527 2.527 2.527 284.036 -0.963745
300 2.527 2.527 2.527 298.403 -1.59668
315 2527 2.527 2.527 312.446 -2.55353
330 2.527 2.527 2.527 326.745 -3.25531
345 2527 2.527 2.527 342.183 -2.81659

Average Error: 2.19917

85

TableC.2 -- Elevation = +30°, Rall = 0°

& biasX
0 2.527
15 2.527
30 2.527
45 2.527
60 2.527
75 2.527
90 2.527
105 2.527
120 2.527
135 2.527
150 2.527
165 2527
180 2.527
195 2.527
210 2.527
225 2527
240 2527
255 2527
270 2527
285 2527
300 2.527
315 2527
330 2.527
345 2527

biasY

2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527

Average Error: 2.58477

biasZ

2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527

etAz

0.692631
14.7701
28.4169
42.2998
55.4996
69.3746
83.3228
100.68
115.462
131.073
146.596
161.963
178.463
194.696
210.923
225.93
241.676
256.306
271.202
287.429
303.07
317.78
332.637
347.005

error

0.692631
-0.229941
-1.58309
-2.70025
-4.50045
-5.62543
-6.67721
-4.31989
-4.53841
-3.92725
-3.40439
-3.03661
-1.53712
-0.303909
0.922546
0.930344
1.67595
1.30585
1.20221
2.42917
3.06952
2.77994
2.63742
2.00488

86

TableC.3 -- Elevation = +45°, Rall = 0°

& biasX
0 2.527
15 2.527
30 2.527
45 2.527
60 2.527
75 2.527
90 2.527
105 2.527
120 2.527
135 2.527
150 2.527
165 2.527
180 2.527
195 2527
210 2.527
225 2527
240 2527
255 2527
270 2527
285 2527
300 2.527
315 2527
330 2.527
345 2527

biasY

2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527

Average Error: 2.71924

biasZ

2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527

etAz

4.05863
18.4052
32.3067
46.5817
60.2651
74.3878
87.6729
102.179
117.64

133.063
148.277
164.374
180.813
197.158
212.956
227.685
241.668
256.72

271.56

290.61

305.948
320.789
335.347
349.984

error

4.05863
3.40518
2.30669
1.5817
0.265087
-0.612213
-2.32713
-2.82083
-2.35997
-1.93739
-1.72319
-0.625839
0.813202
2.15839
2.95589
2.68477
1.66843
1.71982
1.55991
5.61023
5.94778
5.78925
5.34665
4.9837

87

TableC.4 -- Elevation = +60°, Rall = 0°

& biasX
0 2.527
15 2.527
30 2.527
45 2.527
60 2.527
75 2.527
90 2.527
105 2.527
120 2.527
135 2.527
150 2.527
165 2527
180 2.527
195 2527
210 2.527
225 2527
240 2527
255 2527
270 2527
285 2527
300 2.527
315 2527
330 2.527
345 2527

biasY

2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527

Average Error: 2.54942

biasZ

2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527
2.527

etAz

6.51264
21.1648
35.4032
48.7785
61.8341
75.3703
91.5399
105.677
119.839
133.783
149.611
163.754
179.423
195.262
210.785
225.705
240.521
256.413
271.985
288.598
304.58

320.462
335.969
351.037

error

6.51264
6.16481
5.40319
3.77849
1.83411
0.370338
1.53986
0.677109
-0.161194
-1.21677
-0.388748
-1.24602
-0.576614
0.261703
0.78479
0.705261
0.52066
1.41272
1.98514
3.59756
4.57983
5.46194
5.96912
6.03741

88

TableC.5 -- Elevation = -30°, Rall = 0°

Fra biasX biasY biasZ etAz error

0 2.527 2.527 2.527 2.802 2.802

15 2.527 2.527 2.527 18.6689 3.66891
30 2.527 2.527 2.527 33.8537 3.85372
45 2.527 2.527 2.527 48.374 3.37397
60 2.527 2.527 2.527 62.5658 2.56581
75 2.527 2.527 2.527 78.1094 3.10941
90 2.527 2.527 2.527 92.2729 2.2729
105 2.527 2.527 2.527 106.13 1.13042
120 2.527 2.527 2.527 121.136 1.13597
135 2.527 2.527 2.527 135.519 0.518646
150 2.527 2.527 2.527 149.932 -0.067718
165 2.527 2.527 2.527 164.638 -0.362366
180 2.527 2.527 2.527 178.783 -1.21729
195 2.527 2.527 2.527 193.224 -1.7756
210 2527 2.527 2.527 207.422 -2.57785
225 2527 2.527 2.527 221.21 -3.79041
240 2527 2.527 2.527 235.025 -4.97545
255 2527 2.527 2.527 249.13 -5.87018
270 2.527 2.527 2.527 26794 -2.06
285 2527 2.527 2.527 282.874 -2.12555
300 2527 2.527 2.527 299.46 -0.54007
315 2527 2.527 2.527 315.549 0.548523
330 2527 2.527 2.527 331.649 1.64865
345 2527 2.527 2.527 346.536 1.53625

Average Error: 2.23032

89

TableC.6 -- Elevation = -45°, Rall = 0°

Fra biasX biasY biasZ etAz error

0 2.527 2.527 2.527 1.0501 1.0501
15 2.527 2.527 2.527 17.7735 2.77351
30 2.527 2.527 2.527 33.173 3.17304
45 2.527 2.527 2.527 47.7869 2.78693
60 2.527 2.527 2.527 62.301 2.30103
75 2.527 2.527 2.527 77.2442 2.24425
90 2.527 2.527 2.527 96.0813 6.08128
105 2.527 2.527 2.527 109.88 4.88046
120 2.527 2.527 2.527 125.225 5.22534
135 2.527 2.527 2.527 139.202 4.20184
150 2.527 2.527 2.527 153.852 3.85184
165 2.527 2.527 2.527 168.259 3.25923
180 2.527 2.527 2.527 182.627 2.6272
195 2.527 2.527 2.527 196.289 1.28906
210 2527 2.527 2.527 211.203 1.20285
225 2.527 2.527 2.527 224.044 -0.956024
240 2527 2.527 2.527 238.173 -1.82668
255 2527 2.527 2.527 252.696 -2.30403
270 2527 2.527 2.527 266.454 -3.54568
285 2.527 2.527 2.527 281.94 -3.06

300 2527 2.527 2.527 297.295 -2.70508
315 2527 2.527 2.527 313.11 -1.88995
330 2.527 2.527 2.527 329.405 -0.595001
345 2.527 2.527 2.527 344.747 -0.253082

Average Error: 2.67015

90

TableC.7 -- Elevation = -60°, Rall = 0°

Fra biasX biasY biasZ etAz error

0 2.527 2.527 2.527 3.91658 3.91658
15 2.527 2.527 2.527 19.3985 4.39847
30 2.527 2.527 2.527 36.1691 6.16908
45 2.527 2.527 2.527 51.1309 6.13087
60 2.527 2.527 2.527 65.5918 5.5918
75 2.527 2.527 2.527 80.2268 5.22684
90 2.527 2.527 2.527 94.6386 4.6386
105 2.527 2.527 2.527 109.184 4.18401
120 2.527 2.527 2.527 123.444 3.44404
135 2.527 2.527 2.527 137.67 2.6702
150 2.527 2.527 2.527 151.865 1.86493
165 2.527 2.527 2.527 166.219 1.21864
180 2.527 2.527 2.527 180.273 0.272522
195 2.527 2.527 2.527 194.158 -0.842422
210 2527 2.527 2.527 208.572 -1.42755
225 2527 2.527 2.527 222.034 -2.96555
240 2527 2.527 2.527 236.545 -3.45494
255 2527 2.527 2.527 249.817 -5.18269
270 2527 2.527 2.527 267.599 -2.40067
285 2527 2.527 2.527 282.962 -2.03796
300 2527 2.527 2.527 208.735 -1.26544
315 2.527 2.527 2.527 314.595 -0.404785
330 2527 2.527 2.527 331.653 1.65347
345 2527 2.527 2.527 347.242 2.2424

Average Error: 3.06685

91

TableC.8 -- Elevation = 0°, Roll = 30°

& biasX biasY biasz etAz error
0 2.5 2.5 2.5 359.619 -0.380676
15 2.5 2.5 2.5 14.698 -0.301957
30 2.5 2.5 2.5 30.1731 0.173098
45 2.5 2.5 2.5 453778 0.377831
60 2.5 2.5 2.5 58.9748 -1.02524
75 2.5 2.5 2.5 74.0228 -0.977249
90 2.5 2.5 2.5 88.2744 -1.72562
105 2.5 2.5 2.5 106.525 1.52481
120 2.5 2.5 2.5 121.171 1.17126
135 2.5 2.5 2.5 135.812 0.812195
150 2.5 2.5 2.5 150.419 0.418549
165 2.5 2.5 2.5 165.833 0.833405
180 2.5 2.5 2.5 180.573 0.572739
195 2.5 2.5 2.5 195.25 0.249908
210 2.5 2.5 2.5 209.911 -0.089202
225 25 2.5 2.5 223.742 -1.25833
240 2.5 2.5 2.5 238.479 -1.52118
255 2.5 2.5 2.5 251.737 -3.26323
270 2.5 2.5 2.5 266.647 -3.35251
285 2.5 2.5 2.5 283.632 -1.36777
300 2.5 2.5 2.5 299.507 -0.493408
315 2.5 2.5 2.5 314.799 -0.200836
330 2.5 2.5 2.5 330.643 0.64325
2.5 2.5

N
&

346.11 1.10974
Average Error: 0.9935

92

TableC.9 -- Elevation = 0°, Roll =45°

& biasX biasY biasz etAz error

0 2.5 2.5 2.5 0.321116 0.321116
15 2.5 2.5 2.5 15.298 0.297969
30 2.5 2.5 2.5 29.2553 -0.744734
45 2.5 2.5 2.5 44,3075 -0.692501
60 2.5 2.5 2.5 58.8875 -1.11253
75 2.5 2.5 2.5 73.413 -1.58698
90 2.5 2.5 2.5 91.3848 1.38483
105 2.5 2.5 2.5 106.901 1.90138
120 2.5 2.5 2.5 122.119 2.11892
135 2.5 2.5 2.5 137.873 2.8734
150 2.5 2.5 2.5 153.388 3.38799
165 2.5 2.5 2.5 169.003 4.00301
180 2.5 2.5 2.5 184.422 4.42244
195 2.5 2.5 2.5 199.288 4.28775
210 2.5 2.5 2.5 213.875 3.87515
225 25 2.5 2.5 227911 2.91138
240 2.5 2.5 2.5 243.091 3.09105
255 2.5 2.5 2.5 255.802 0.802017
270 2.5 2.5 2.5 270.874 0.874359
285 2.5 2.5 2.5 287 2.00046
300 2.5 2.5 2.5 302.2 2.19989
315 2.5 2.5 2.5 317.792 2.79211
330 2.5 2.5 2.5 331.533 1.53253
345 25 2.5 2.5 347.064 2.06406

Average Error: 2.13661

93

Table C.10 -- Elevation = 0°, Roll = 60°

& biasX biasY biasz etAz error
0 2.5 2.5 2.5 0.713101 0.713101
15 2.5 2.5 2.5 15.373 0.372992
30 2.5 2.5 2.5 30.4885 0.488461
45 2.5 2.5 2.5 44,9066 -0.093429
60 2.5 2.5 2.5 59.5241 -0.475864
75 2.5 2.5 2.5 74.3486 -0.651436
90 2.5 2.5 2.5 89.5007 -0.499252
105 2.5 2.5 2.5 105.895 0.894508
120 2.5 2.5 2.5 121.474 1.47446
135 2.5 2.5 2.5 136.827 1.82701
150 2.5 2.5 2.5 152.856 2.85614
165 2.5 2.5 2.5 167.872 2.8721
180 2.5 2.5 2.5 183.372 3.37248
195 2.5 2.5 2.5 198.422 3.42206
210 2.5 2.5 2.5 213.333 3.33342
225 25 2.5 2.5 227.954 2.95441
240 2.5 2.5 2.5 241.699 1.69888
255 2.5 2.5 2.5 255.965 0.9655
270 2.5 2.5 2.5 269.858 -0.142151
285 2.5 2.5 2.5 283.865 -1.13538
300 2.5 2.5 2.5 297.903 -2.09738
315 2.5 2.5 2.5 318.422 3.42188
330 2.5 2.5 2.5 332.487 2.48669
2.5 2.5

N
&

346.795 1.79504
Average Error: 1.6685

94

APPENDIX D. HERCULES API C++ HEADER FILES

The Hercules Articulated Body Modeling API consists of severa source codefiles. These
programs are used to store information in efficient, re-sizable lists, create vertices and polygons,
combine these vertices and polygonsinto rigid bodies, join these rigid bodies into articul ated
bodies of many parts and animate these articulated bodies in a computer graphics application.

The following C++ header files encompass the entire Hercules API. The description of
their use can be found in Chapter VI and Appendix E. An example application of the Hercules API

can be found in Appendix F.

95

1. Filee HGMatrix.h

/******************

HGratrix.h -- Matrix math library
witten by WI Frey

This class was designed specifically to support 3D Coordinate
transformations. Thus, sone of the nethods are defined QLY
for a 4x4 matrix. These nethods are designated by a 4 suffix.

This class represents vectors as (1,X) matrices. The default
matrix size is (1,4).

NOTE: matriXx subscripts are zero-based.
*******************/
#pragna once

#i ncl ude "HX ypes. h"

#defi ne MAX_ARRAY DM 4 [/ largest matrix supported
class H@vatri x
friend HG0i nt operator* (HE&oint & HAVatrix &);

publi c:
Havatrix(int = 4, int = 4); /!l noinit
Havatrix(int, int, int, float[]); [/ init with array
HAVat ri x(const HGVatrix &); /1 copy
HGVat ri x operator+(const HGvatri x & const; [/ matrix + matrix
HGVat ri x operator+(const float) const; [/ matrix + scalar
HQvat ri x operator-(const HGatrix & const; /] matrix - matrix
HQAVatri x operator-(const float) const; [/ matrix - scalar
HQAVatri x operator*(const H@atrix & const; [/ matrix * matrix
HQAVatri x operator*(const float) const; [/ matrix * scalar
HEoi nt operator*(const HGPoint & const; [l matrix * HGPoi nt
HGvat ri x operator/(const float) const; /1l matrix / scalar
HGVat ri x operat or=(const HGVatrix &); [/ matrix assignnent
float operator()(int, int) const; /'l el ement access
float operator()(int) const; [/ vector el enent access
void SetHenent(int, int, float); /] set only elenent X,y
void SetH enent(int, float); /] set only elenent 0,y of vector
void Set(int, float[]); /] set entire matrix with array
HGvat ri x Transpose() const; /]l standard matrix transpose
HaVatri x Inverse() const; /] generic matriXx inverse
HAVatri x | nverseH4() const; /1 4x4 special inverse matriXx
HAVatri x RotationMatrix4() const; /] 3x3 rotation matrix
HAvatri x Transl ati onMatrix4() const; /] 1x3 translation matrix
HGAVat ri x PerspectiveMatrix4() const; /1 1x3 perspective matri X
void Qear(); [l clear to identity
int RowsQ) const; [l rowsize of matrix
int ColsQ) const; [/ colsize of matrix

96

float *GetMatri xDataStructure() const {return &l enment[0][0];}

pr ot ect ed:
f1 oat el erent [NAX_ARRAY DI M [MAX_ARRAY DI M ;
i nt rows, cols; [/ matrix size (rows x cols)

97

2. Filee HGPoaint.h

/***************

H&oint.h -- Vertex class for use with HG
witten by Wl Frey

*****************/

#pragma once

struct HGPoi nt

{
float x, y, z, h;
HGPoi nt *next ;
HGPoi nt *prev;

HG&Poi nt () ;

HGoi nt (float[]);

HGPoi nt (HGPoi nt &) ;

HGPoi nt &operator= (H3oint &);
void SetPoint(float []);

~HGPoi nt () ;

98

3. Filee HGPaly.h

/******************

H3ol y. h -- Pol ygon cl ass
witten by Wl Frey

*******************/

#pragnma once

#i ncl ude "HX ypes. h"
#i ncl ude "HGArraylLi st. cpp"

cl ass HGPol y
friend class H&ol yLi st ;
public:

HGPol y() ;

HGPol y(HGPoly &) ; // copy

HGPol y &operator=(HEPoly &);

int AddVertex(int);

void SetVertexList(int, int[]); // set vertex list fromarray
int *GetVertex(int) ; // get nunbered vertex

int Get NumVertices() ;

private:
HGAr rayLi st <i nt > vert exLi st ;
HGPol y *next ;
HGPol y *prev;

99

4. Filee HGRigidBody.h

/*******
HGig
Witt
Modi f

kkkkkkkk

#pr agma

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

*kkkkkkkkkhk*x

i dBody. h -- R gid Body cl ass
en for Mac G5 by WI Frey
ied for Qpen@ by WI Frey

***********/

once

<mat h. h>

"H& ypes. h"
"HQmatri x. h"
"HXol y. h"

"HGAr rayli st. cpp”

cl ass HGER gi dBody

publ

iC:
HGR gi dBody() ;

int AddVertex(HGPoint *); // returns vertexnum
int AddPol ygon(HGoly *); // returns pol ynum
voi d AppendRi gi dBody(HGR gi dBody *); // append another object to this

voi d Set Posture(HGState6f *); // set posture and cal cs hMatrix
void SetPosture(float, float, float, float, float, float);
voi d Set At t achnent Poi nt (HGR gi dBody *, int, // attach to another body
Posi t Type = absol ute,
HGRot Axi sDesi gnat or = noAxi s,
HGRot Axi sDesi gnat or NOAXi s,
HGRot Axi sDesi gnat or NoAXi s) ;
void Detatch(); // detatch body fromroot body
voi d Set BodyMat eri al Type(HGVat eri al Type *); // set material with nat'l
voi d Set BodyMaterial Type(float []); // set material with array
voi d Set BodyDr awi nghbde(Dr awi nghMbdeType) ;
voi d Set Updat eMet hod(Updat eMet hodType) ;

virtual void Updat ePosture();
void Transforn(); // builds body hMatri x

void ShiftPRivotPoint(int); // make point x the articulation pivot
voi d ShiftPivotPoint(float,float,float);// make new articul ati on pivot
voi d Refl ect (HGAXi sDesignator); // reflect object along specified axis

H&oi nt *GetVertex(int) ; // get specified vertex

HEoi nt *Get TVertex(int); // get specified transforned vertex
H&oly *GetPol y(int) ; // get nunbered poly

HGSt at e6f *Get Posture() {return &posture;}

Havatrix *Get Hvatrix() {return &Matrix;}

HQVat eri al Type *Get BodyMat eri al Type() {return &bodyMaterial ;}
Dr awi ngModeType Get BodyDr awi nghbde() {return draw nghbde;}
int Get NumVertices() ;

int Get NunPol ys() ;

H&Poi nt &Get VertexNornal (int); // call after polys defined

100

H&oi nt &Get Pol yNormal (int); // call after polys defined
H&oi nt &Get TPol yNormal (int); // call only after Transforn{) done

~HGR gi dBody() {}

pr ot ect ed:
[/ The following are articulation parameters. They detail which
/1 body this object is attached to, and at which of its points
/1 to attach. |If the articulatedQflag is not zero, then there
[/ is a body to which this is attached and the position portions of
[/ this object's posture are to be ignored. |If articulatedQis zero,
/1 then this object is not articulated and the position portions
/1 of this object's posture are used for positioning the object.
i nt articulatedQ // is this body articul ated?
HGR gi dBody *at t achedTo; /1 to what is this body attached?
int at Poi nt Num /1 at which point of other body?
Posi t Type positRelation; // howto position joined body?
short azJoint; /1 bool ean azinmuth joint angle flag
short el Joi nt; /1 boolean elev joint angle flag
short rlJoint; /1 boolean roll joint angle flag
HGPoi nt scratchPoint; // scratch data
Updat eMet hodType updat eMet hod; // posture update nethod
Dr awi ngModeType draw nghbde; // body renderi ng node
HGSt at e6f post ur e;
HGVat ri x hvatri x;

HGAr r ayLi st <HGPoi nt > vert exLi st ;
HGAr r ayLi st <HGPoi nt > vert exNor mal Li st ;
HGAr r ayLi st <HGPol y> pol ygonLi st ;

HGPoi nt r oot Poi nt ;
HQvat eri al Type bodyMat eri al ;
virtual float AzinmuthScript(); /1 override for scripted notion
virtual float H evationScript();
virtual float Roll Script();
virtual float XPositScript();
virtual float YPositScript();
virtual float ZPositScript();
virtual float UpdateAzi muth(); /1 override for physical notion
virtual float UpdateH evation();
virtual float UpdateRoll ();
virtual float UpdateXPosit();
virtual float UpdateYPosit();
virtual float UpdateZPosit();
virtual float SensorAzi muth(); /1 override for sensor notion
virtual float SensorH evation();
virtual float SensorRoll();
virtual float SensorXPosit();
virtual float SensorYPosit();
fl

vi rtual oat SensorZPosit();

101

5. Filee HGViewPoint.h

/******************

HGVi ewPoi nt. h -- Vi ewPoi nt cl ass

witt

en by WI Frey

*******************/

#pragma once

#i
#i
#i
#i

#i
#i
#i
#i

ncl ude
ncl ude
ncl ude
ncl ude

ncl ude
ncl ude
ncl ude
ncl ude

<mat h. h>

<@l/gl.h> /] Get the Qpen@ required includes.
<@/ gl u. h>

<@/ gl x. h>

"HQ ypes. h"
"HGArraylLi st. cpp
"HGvatri x. h"

"H& i gi dBody. h"

cl ass HGVi ewPoi nt

publ

pr ot

VO
VO

icC:

HGVi ewPoi nt (fl oat enl arge=30, float neardi p=1.0,
float farQip=100000.0, float fov=45);

voi d Posi tionVi ewPoi nt (HGSt at e6f *); // sets posture and cal cs hMatri x
voi d Render (bj ect (HGRi gi dBody *); // renders rigid body

ect ed:

HGSt at e6f post ur e;

f1 oat enl ar gerent ;
f1 oat near d i pPl ane
f | oat fardi pP ane;
f | oat fieldOView

voi d turnOnTheLi ght Model () ;
id turnOTheLi ghts();
idturnOnMaterial (G.enum HGR gi dBody *);

102

6. Filee HGPrimitives.h

/***************

H&Primtives.h -- Primtives for use with HG
witten by Wl Frey

*****************/

#pragnma once

#i ncl ude "HX ypes. h"
#i ncl ude "HX i gi dBody. h"

class H@EBl ock : public HGR gi dBody

public:
H&BI ock(fl oat xdi m=1.0, float ydinFl. 0, float zdin¥l.0);
H

class HXylinder : public HGR gi dBody

public:
HXyl i nder (i nt segnent s=10, int rmakeTopFl ag=1, int nakeBottontl ag=1,

fl oat topXP usRadi us=1.0, float topXM nusRadi us=1. 0,
fl oat topZM usRadius=1.0, float topZM nusRadi us=1. 0,
float bottonXPl usRadi us=1.0, float bottomXM nusRadi us=1. 0,
float botton¥Pl usRadi us=1.0, float botton¥M nusRadi us=1. 0,
float bottonXPosit=0.0, float bottomyPosit=-1.0,
fl oat bottonzPosit=0.0);

b

/1 generic spheroid object
[/ note: all radii are positive. Negative radii allows concavity.
cl ass HGSpheroid : public HGR gi dBody

public:
HGSpher oi d(i nt segnent s=10,
float xP usradius=1.0, float xM nusRadi us=1. 0,
float yM usradius=1.0, float yM nusRadi us=1. 0,
float zM usradius=1.0, float zM nusRadi us=1. 0);

103

7. Filee HGTypesh

/******************

HG& ypes. h -- Type definitions
witten by WI Frey

*******************/
#pragma once

#i ncl ude <nat h. h>
#i ncl ude "H®oi nt. h"

typedef struct {float az, el, rl, xp, yp, zp;} HCSt ate6f;
typedef struct {float az, el, rl;} HXxientation3f;
typedef struct {float xp, yp, zp;} HGPosition3f;
typedef struct {unsigned int red, green, blue, alpha;} HGEREBACoI or;
typedef struct {float anbient[4];
float diffuse[4];
fl oat specular[4];
float shininess[1];} HQAaterial Type;
enum Dr awi nghbdeType {invisibl e, /1 don't draw body
Wi r eFr ane,
opaque,
f | at Shaded,
snoot hShaded} ;
enum Updat eMet hodType {noMbti onUpdate, // manual posture update only
scriptAnimated, // posture updated with script
physi cal | yBased, // posture updated as physical body
sensor Updat ed}; // update posture with sensor data
enum HGAXi sDesi gnat or {xAxis, yAXis, zAXis}; /1 axis desig paraneter
enum HGRot Axi sDesi gnat or {noAxi s, azinmuth, elevation, roll};
enum Posit Type {absolute, relative}; // articulated body positioning type

const float Pi = 3.141592653589793;

104

APPENDIX E. HERCULES API DOCUMENTATION

The author has given the Hercules API agreat deal of flexibility in the construction and
manipulation of both rigid and articulated bodies. This section describes each functional class of
the Hercules system in detail. An experienced C++ programmer will be able to easily utilize the
Hercules API to build even the most complicated articulated bodies. An example application of the
API to build and perambulate a 15-segment human body isincluded in Appendix E. Only the
applicable sections of the main C++ code body are included to show the use of theHumanBody

class.

105

1. HGArrayList

The author created the HGArrayList class template to provide an expandable list structure
with the approximate data retrieval speed of an array. Typically link list data structures are low in
retrieving data but are expandable in size during runtime. Arrays are not expandable once declared
but are lightning fast at dataretrieval. The HGArrayList class provides the AP with the best of

both worlds.

AddMember() : Thismethod is used to insert a new member into the declared
HGATrrayList class object. Theinput parameter is a pointer to a data object of the type the

instantiated ArrayList is declared to hold. Thisfunction returns the list index of new member.
GetMember() : Thismethod is used to access a particular list member. The input
parameter isthe list index of the desired list member. A pointer is returned which pointsto the

desired data object.

GetMember Count() : This method returns the size of the ArrayList as an integer count

of the members currently in thelist.

ClearList() : Thismethod clearsthe ArrayList, releasing all storage and resetting all

parametersto the initia list state.

106

2. HGMatrix

The author created the HGMatrix class to support the Hercules API with specific matrix
operations that were required for manipulation of data structures within the API. Applications
programmers are allowed access to any of the HGMatrix class member functionsto alow for
custom manipulation of user data structures. The class has been expanded to support most

common matrix manipulations involved in three-dimensional graphics transforms.

HGMatrix(int, int) : Thisconstructor allows the instantiation of araw matrix class
object. Thefirst input parameter specifies the number of rowsin the matrix. The second
parameter specifies the number of columns. if either parameter is not specified, it defaultsto 4. If
the matrix is defined as square, the matrix isinitialized to aunit matrix. Otherwise, al of the

matrix elements are zeroed. If either input parameter is one, arow vector is assumed.

HGMatrix(int, int, int, float[]) : Thisconstructor allows the initialization of a matrix
with a specified array. Thefirst two parameters specify the number of rows and columns,
respectively. The third parameter isthe number of elementsin the initialization array. The fourth
parameter isthe array to use for initialization. The matrix size initialization constraints are the same

as described above.

operator+(HGMatrix) : This method performs matrix addition between two like sized

matricesonly. If the matrices are not like sized, a base-initialized matrix is returned.

operator+(float) : Thismethod performs scalar addition of the input parameter to every

member of the target matrix.

107

operator-(HGMatrix) : This method performs matrix subtraction of the parameter matrix
from the target matrix only if the matrices are like sized. If they are not he same size, a base-

initialized matrix is returned.

operator-(float) : This method performs scalar subtraction of the input parameter from

every member of the target matrix.

operator*(HGMatrix) : This method performs matrix post-multiplication of the target
matrix by the parameter matrix. If the two matrices are not compatible for multiplication, a base-

initialized matrix results.

operator*(float) : This method performs scalar multiplication of the input parameter and

every member of the target matrix.

operator*(HGPoint) : This method performs vector post-multiplication of the target
matrix. The resultant HGPoint has been corrected to return its fourth parameter (h) to unity for

support of three-dimensional graphics transforms.

operator/(float) : This method performs scalar division of al members of the target

matrix, provided division-by-zero is not attempted.

operator=(HGMatrix) : Thismethod performs assignment of the target matrix's
elements with the corresponding el ements from the parameter matrix. If the parameter matrix is
smaller than the target matrix, only those elements in target matrix which correspond to the

parameter matrix are altered.

108

operator ()(int, int) : Thismethod allows the AP to have access to individual matrix

elements using the parentheses operator.

operator()(int) : Thismethod allows the AP to have access to individual vector (single-

row matrix) elements using the parentheses operator.

SetElement(int, int, float) : This method allows the AP to set individual elements of the

matrix to the input float parameter.

SetElement(int, float) : This method allowsthe AP to set individual elements of the

vector to the input float parameter.

Set(int, float[]) : This method allows the AP to set the entire matrix with an input array.

Transpose() : This method performs the standard matrix transpose operation on the target

matrix. The resulting matrix is returned without altering the target matrix.

Inverse() : This method calculates the standard matrix inverse of the target matrix using

Gausian elimination. The resulting matrix is returned without altering the target matrix.
InverseH4() : Thismethod performs matrix inversion of a homogeneous transformation
matrix. It isspecific to computer graphics transforms, and thus has a more ssimple inverse than a
generic matrix.
RotationMatrix4() : Thismethod returns a 3x3 matrix which is the rotation portion of a

homogeneous transformation matrix.

109

TrandationMatrix4() : This method returns a 1x3 matrix which is the trandation portion

of ahomogeneous transformation matrix.

Per spectiveM atrix4() : This method returns a 1x3 matrix which is the perspective

portion of a homogeneous transformation matrix.

Clear() : Thismethod clears the matrix to the unity matrix, if square, and zeroes

otherwise.

RowsQ() : Returnsthe number of rowsin the matrix.

ColsQ() : Returnsthe number of columnsin the matrix.

GetMatrixDataStructure() : Returns the matrix as areference to the two-dimensional

array data structure in which the matrix elements are stored. Thisfunction isvery useful for

sending the contents of the matrix to SGI OpenGL routines.

110

3. HGPoint

This class (structure) was created to allow flexibility in manipulation of vectors

representing various aspects of the Hercules API, especially RigidBody vertices.

HGPoint(float[]) : Thisconstructor initializes the point using the input array.

operator=(HGPoint) : This method allows the point to be easily copied from another

HGPoint.

SetPoint(float[]) : This method allows the elements of a point to be set using the input

array.

111

4. HGPoly

This class was developed by the author to allow ease of polygon definition and

manipulation. This class simplifiesthe Herculesinternal data structures.

operator=(HGPoaly) : This method allows the polygon to be duplicated from the input

polygon.

AddVertex(int) : This method adds the numbered RigidBody vertex to the vertex list. In
actuality, only the index of the vertex isadded. Later, Hercules uses thisindex to access the vertex

itself. The vertex is never specificaly referenced by the HGPoly class.

SetVertexList(int, int[]) : Thismethod isused to build the polygon's vertex list from the

specified integer array.

GetVertex(int) : Thismethod returns the a pointer to the index of the specified vertex.

GetNumVertices() : Returnsthe number of vertices which define the polygon.

112

5. HGRigidBody

The HGRigidBody class is the workhorse of the entire Hercules API. It containstherigid
body definition (vertices and polygons), its attachment information, material specification, drawing
mode and update method. It allowsthe rigid body to be manipulated by shifting its pivot point,
reflecting it through a plane, positioning and orienting it in space and appending it to another rigid

body.

AddVertex(HGPoint *) : This method adds the specified vertex to the rigid body's

vertex list.

AddPolygon(HGPoly *) : This method adds the specified polygon to the rigid body's
polygon list. Addition of a polygon also updates the vertex normals of the vertices that the

polygon uses. Thisisdoneto allow proper Gouraud shading of the rigid body.

AppendRigidBody(HGRIigidBody *) : This method appends the entire specified rigid
body to the target rigid body object. The specified body's vertex list, vertex normal list and
polygon list are all copied into the target body's lists. The specified body takes on the material and

drawing mode characteristics of the target body.

SetPosture(HGState6f *) : This method sets the rigid body's position and orientation
using the specified HGState6f data structure (see HGTypes.h for the structure definition).

SetPosture(float, float, float, float, float, float) : This method sets the rigid body's

position and orientation using the six input parameters. In order, the input parameters are azimuth,

elevation, roll, x position, y position, z position.

113

SetAttachmentPoint() : This method is used to set the parent of the target rigid body.
The parent is the body to which the target rigid body will remain attached to throughout its
manipulations. The parameters of this function are a pointer to the parent HGRigidbody to which
the target body isto be attached, the vertex of the parent body at which to attach the target body,
the method of orientation (either absolute or relative) and the axes of rotation about which motion is

alowed under the relative orientation method.

Detatch() : This method detaches the target body from its parent.

SetBodyM aterial Type() : This method sets the body OpenGL material type using the
specified HGMaterial Type data structure (see HGTypes.h for the structure definition).

SetBodyM aterial Type(float []) : This method sets the body OpenGL material type using

the specified 13 element array (see HGTypes.h for the structure definition).

SetBodyDrawingM ode(DrawingM odeType) : This method sets the body drawing
mode to either wireFrame, flatShaded or smoothShaded. wireFrame drawing mode does not
remove hidden surfaces. smoothShaded uses the standard Gouraud shading algorithm included in

OpenGL.

SetUpdateM ethod(UpdateM ethodType) : This method allows the AP to set therigid
body's automatic posture updating method (scriptAnimated, physicallyBased, sensorUpdated).
This parameter is used to select the proper update method when the UpdatePosture method is
called.

UpdatePosture() : Thismethod allows the AP a standard facility for updating the posture
of therigid body. The possible selections for update method are scriptAnimated, physicallyBased

114

and sensorUpdated. It isup to the AP to provide the specific posture updating methods for any
inherited class of HGRigidBody which intends to use the UpdatePosture method. The
scriptAnimated methods are called AzimuthScript, ElevationScript, RollScript, X PositScript,

Y PositScript and ZPositScript. The physicallyBased methods are called UpdateAzimuth,
UpdateElevation, UpdateRoll, UpdateX Posit, UpdateY Posit and UpdateZPosit. The

sensorUpdated methods are not supported yet.

Transform() : Thismethod is called by the AP to caused the graphical transformation of
the rigid body according to the body's posture. This method causes the body's H-matrix to be
built and allows the object to be rendered properly. If the Transform method is not called before

the object is rendered, the object will be drawn with its last transformed posture.

ShiftPivotPoint(int) : This method shifts all of the body's vertices so that the new local
origin of the body is placed at the specified vertex. In other words, the body will subsequently

rotate around the specified vertex.

ShiftPivotPoint(float,float,float) : This method also shifts the pivot point of the body,

but pivot point is shifted to the specified local coordinates.

Reflect(HGAXxisDesignator) : Thismethod reflects all of the body's vertices through a

plane perpendicular to the specified axis (xAxis, yAxis or ZAxis). Thisisuseful for making bodies

which are mirror images of each other.

GetVertex(int) : Thismethod returns a pointer to the specified non-transformed vertex.

GetTVertex(int) : This method returns a pointer to the specified transformed vertex (the

global coordinates of the vertex at the current body posture).

115

GetPoly(int) : This method returns a pointer to the specified polygon.

GetPosture() : This method returns a pointer to the body's current posture data structure.

GetHMatrix() : This method returns a pointer to the body's current H-Matrix.

GetBodyMaterialType() : Thismethod returns a pointer to the body's material type data

structure.

GetBodyDrawingMode() : This method returns the body's drawing mode.

GetNumVertices() : This method returns the number of vertices contained in the body's

vertex list.

GetNumPolys() : This method returns the number of polygons contained in the body's

polygon list.

GetVertexNormal(int) : This method returns a reference to the specified vertex's normal

vector. Thisisnecessary for Gouraud shading in OpenGL.

GetPolyNormal(int) : Thismethod returns a reference to the specified polygon's normal

vector. Thisisnecessary for flat shading in OpenGL.

GetTPolyNormal(int) : This method returns a reference to the specified polygon normal

vector in global coordinates.

116

6. HGViewPoint

The HGViewPoint classis the code responsible for generating aview in the virtual world.
Each ViewPoint object hasits own posture, representing its position and view direction in the
world. A simple lighting model has been incorporated into the HGViewPoint class. It isnot

modifiable. That functionality will be added in later version of the HGViewPoint code.

HGViewPoint(float enlarge, float near Clip, float far Clip, float fov) : This constructor
allowsthe AP to create the viewpoint object and specify the enlargement factor, near clipping
plane, far clipping plane and field-of-view. These are the same parameters as defined for OpenGL

drawing environments. [OPENGL 94]

PositionViewPoint(HGState6f *) : This method allows the AP to position and orient the

viewpoint.

Render Object(HGRIigidBody *) : This method renders the specified rigid body from

the current viewpoint's frame of reference.

117

7. HGPrimitives

HGPrimitives classes are inherited from the base HGRIigidBody classes and represent three
basic, pre-prepared building blocks: HGBIlock, HGCylinder and HGSpheroid. These primitives
can be used to build more complicated rigid body structures by using the HGRigidBody method
AppendRigidBody.

HGBIlock(float xdim, float ydim, float zdim) : This primitive is used to make aright

rectangular block with x, y, and z dimensions of xdim, ydim and zdim, respectively.

HGCylinder (int segments=10, int makeT opFlag=1, int makeBottomFlag=1,

float topXPlusRadius=1.0, float topXMinusRadius=1.0,

float topZPlusRadius=1.0, float topZMinusRadius=1.0,

float bottomXPlusRadius=1.0, float bottomXM inusRadius=1.0,
float bottomZPlusRadius=1.0, float bottomZMinusRadius=1.0,
float bottomXPosit=0.0, float bottomY Posit=-1.0,

float bottomZPosit=0.0)

The HGCylinder primitive isafairly complicated class to use because of the number of
parameters passed. However, the classis very flexible in the variety of cylinders which can be
made. Note that the cylinder isformed in the upright position with the y-axis being along its
cylindrical axis.

By giving the PlusRadius and MinusRadius parameters different values, a cylinder with
different shaped opposing sides can be made. By making the X- and Z-radius parameters
different, a squashed cylinder can be made. Making the top and bottom radii different will form a
tapered cylinder. By setting bottomXPosit and / or bottomZPosit to values other than zero, a
skewed cylinder can be made. Setting the bottomY Posit parameter controls the height of the
cylinder. The segments parameter controls how many segments the walls of the cylinder are

broken up into. The makeTopFlag and makeBottomFlag parameters define to the routine whether

or not the polygons for the top and the bottom of the cylinders should be generated.

118

HGSpheroid(int segments=10,
float xPlusradius=1.0, float xMinusRadius=1.0,
float yPlusradius=1.0, float yMinusRadius=1.0,
float zPlusradius=1.0, float zMinusRadius=1.0)
The HGSpheroid primitive allows the creation of various types of spheroidal shapes. By
setting the radius parameters to different values, various flattened and extended spheroidal shapes
can beformed. Setting both axisradii to either a positive or negative value will allow the

generation of a spheroid with a concave (rather than convex) side. The segments parameter

controls how many longitudinal and latitudinal segments the spheroid is broken up into.

119

120

APPENDIX F. EXAMPLE HERCULES APPLICATION

The following classes are used to build and manipulate a fifteen-segment human body
using the Hercules system. Thisisjust one example. The author has aso constructed and
animated a 27-segment articulated Black Widow Spider. The same basic techniques are used for
both. Asthe human model is useful in more virtual environment applications, it isincluded here
instead of the spider.

The animation routines are designed to give the human model alife-like walking or running
motion, depending on the rate parameter passed to the motion routine. However, no physical basis
was used for the walk script. Only sine and cosine functions were used to give an appropriate

period appearance to the script.

1. Filee HumanBodyParts.h

/***************

HumanBodyParts. h -- Exanpl e application using Herc API
witten by WI Frey

*****************/

#i ncl ude "HX ypes. h"

#i ncl ude "H& i gi dBody. h"

enum Command {stand, wal k, halt};

fl oat DegToRad(fl oat);

/1 Human Torso

cl ass HumanTorso : public HGR gi dBody
public:

HumanTor so() ;
voi d Updat ePost ure(Command, float, float, float);

121

/!l Human Head
cl ass HumanHead : public HGR gi dBody

public:
HumanHead() ;
voi d Updat ePost ure(Command, float, float, float);

|

/] Human H ps
class HumanH ps : public HGR gi dBody

public:
HumanH ps() ;
voi d Updat ePost ure(Command, float, float, float);
};

/1 Human Uoper Legs
cl ass HumanUpperLeg : public HGR gi dBody

public:
HunmanUpper Leg() ;
};

class HumanRULeg : public HumanUpper Leg

public:
HumanRULeg() {}
voi d Updat ePost ure(Command, float, float, float);

};
class HumanLULeg : public HumanUpper Leg

public:
HumanLULeg() {}
voi d Updat ePost ure(Command, float, float, float);

};
/! Human Lower Legs
cl ass HurmanLower Leg : public HGR gi dBody

public:
HumanLower Leg() ;

};
class HumanRLLeg : public HumanLower Leg

public:
HumanRLLeg() {}
voi d Updat ePost ure(Command, float, float, float);

};
class HurmanLLLeg : public HumanLower Leg
public:

HumanLLLeg() {}
voi d Updat ePost ure(Command, float, float, float);

122

/1 Human Feet
cl ass HumanFoot : public HGR gi dBody

public:
HumanFoot () ;
};

cl ass HumanRFoot : public HumanFoot

publ i c:
HunmanRFoot () {}
voi d Updat ePost ure(Command, float, float, float);

};
cl ass HumanLFoot : public HurmanFoot

public:
HumanLFoot () {}
voi d Updat ePost ure(Command, float, float, float);

|

// Human Uoper Arns
class HumanRUArm: public HGR gi dBody

public:
HumanRUAr n() ;
voi d Updat ePost ure(Command, float, float, float);

b
class HumanLUArm: public HGR gi dBody

public:
HumanLUAr n() ;
voi d Updat ePost ure(Command, float, float, float);

};
/I Human Lower Arns
cl ass HurmanLower Arm: public HGR gi dBody

public:
HumanLower Arn() ;
};

class HumanRLArm: public HumanLower Arm

public:
HumanRLArn() {}
voi d Updat ePost ure(Command, float, float, float);

};
class HumanLLArm: public HunmanLower Arm
public:

HumanLLArn() {}
voi d Updat ePost ure(Command, float, float, float);

123

// Human Hands
cl ass HumanRHand : public HGR gi dBody

public:
HumanRHand() ;
voi d Updat ePost ure(Command, float, float, float);
H

cl ass HurmanLHand : public HGR gi dBody
public:

HumanLHand() ;
voi d Updat ePost ure(Command, float, float, float);

124

2. Filee HumanBodyParts.cpp

/***************

HumanBodyParts. cpp -- Exanpl e application using Herc API
witten by WI Frey

*****************/

#i ncl ude "HumanBodyPart s. h"

fl oat DegToRad(fl oat inDegrees)
{
return (inDegrees / 180) * Pi;

HurmanTor so: : HunanTor so()

{
i nt index;
HG&Poi nt poi nt ;
HGPol y pol y;

f1 oat pArray[] = {0,0,0,1, {1 0 -- root

2,-1.5,-2.5,1, /[l 1 -- front
-2,-1.5,-2.5,1, Il 2

2,1,-1,1, /1 3

-2,1,-1,1, /1 4

4,0.5,-1,1, /15

-4,0.5,-1,1, /1 6

4,-1,-1,1, 117

-4,-1,-1,1, /1 8

3,-2,-1,1, /1 9

-3,-2,-1,1, /1 10

2,-7,-1,1, /1 11

-2,-7,-1,1, [l 12

2.5,0,2,1, /1 13 -- back
-2.5,0,2,1, /1 14

2,1,1,1, /1 15

-2,1,1,1, /] 16

4,0.5,1,1, 11 17

-4,0.5,1,1, [/l 18

4,-1,1,1, /1 19

-4,-1,1, 1, /1 20

3,-2,1,1, /1 21

-3,-2,1,1, [l 22

2,-7,1,1, /1 23

-2,-7,1,1, [l 24

0,-6.75,0,1, [/ 25 -- hips anchor
0,1,0,1, /!l 26 -- head anchor
4,0,0,1, [l 27 -- right arm anchor
-4,0,0, 1}; [/ 28 -- left armanchor

125

for (index = 0; index < 116; index += 4)

poi nt . Set Poi nt (&Array[i ndex]);
AddVer t ex(&poi nt) ;

}

i nt vertexl[] = {1,243, [/l front quad's
11,12, 2,1,
13, 15, 16, 14, [/ back quad's
13, 14, 24, 23,
3,4, 16, 15, // lateral quad's
4,6, 18, 16,
6, 8, 20, 18,
8, 10, 22, 20,
10, 12, 24, 22,
12, 11, 23, 24,
11,9, 21, 23,
9,7,19, 21,
7,5,17, 19,
5, 3,15, 17};

for(index = 0; index < 56; index+=4)

{
pol y. Set Vert exLi st (4, &ertexl[index]);
AddPol ygon(&pol y) ;

}

i nt vertex2[] = 1,35 [/ front tri's

DO P ONOI™

RPNONNNRP PR

, 18, /! back tri's

13,17, 15};
for(index = 0; index < 48; index+=3)

pol y. Set VertexLi st (3, &ertex2[index]);
AddPol ygon(&ol y) ;

Set BodyDr awi nghbde(f | at Shaded) ;
Set Updat eMet hod(scri pt Ani mat ed) ;

return;

126

voi d HumanTor so: : Updat ePost ur e(Command com float dir, float rate, float timnestanp)

{
fl oat del taMove, constant Move, rateStanp, |astRateStanp;
static float lastTimeStamp = O;
switch (com
{
case wal k:
rateStanp = rate * timestanp;
|astRateStanp = rate * | ast Ti meSt anp;
posture.az = dir + (DegToRad(20) * -sin(rateStanp));
posture. el = -DegToRad(rate/2);
posture.rl = 0;
constant Move = (rateStanp - |astRateStanp) * rate * rate / 40;
del taMove = (14 - const ant Move)
* fabs(fabs(sin(0.5236 * sin(rateStanp)))
- fabs(sin(0.5236 * sin(lastRateStanp))))
+ const ant Move;
posture.xp += deltaMve * -sin(dir);
posture.zp += deltaMove * -cos(dir);
posture.yp = (rate / 20) * (1 - (fabs(cos(rateStanp))
* fabs(cos(rateStanp))));
br eak;
case stand:
defaul t:
posture.az = dir;
posture.el = 0;
posture.rl = 0;
}
Transform);
| ast Ti meStanp = ti mest anp;
return;
}

127

//**

HunmanHead: : HunanHead()

{

i nt index;

HG&Poi nt poi nt ;
HGPol y pol y;
f1 oat pArray|]

for (index = 0;

}

i nt

vertex[] =

={0,0,0,1,

1,0,-1,1,
-1,0,-1,1,
1,0.5,-1,1,
-1,0.5,-1, 1,
1.25,2.75,-1.45,1,

-1.25,2.75,-1.45, 1,

1.15,3.5,-1.35, 1,
-1.15,3.5,-1. 35,1

1,0,1,1,

-1,0,1,1,
1,0.5,1,1,
-1,0.5,1, 1,
1.25,2.75,1.45, 1,
-1.25,2.75,1.45,1
1.15,3.5,1.35,1,
-1.15,3.5,1. 35,1,

0.75,2.3,-2.6,1,
-0.75,2.3,-2. 6,1,

0,2.25,-1.25,1,
0.3,1.5-1.1,1,
-0.3,1.5,-1.1, 1,
0,1.4,-1.6,1};

i ndex < 92; index += 4)

poi nt . Set Poi nt (&Array[i ndex]);
AddVer t ex(&poi nt) ;

{1,2,4,3,

3,4,6,5,
5, 6’ 8’ 7’

9,11, 12, 10,
11, 13, 14, 12,
13, 15, 16, 14,

7,8, 16, 15,

128

/!l 0 -- root

/11
112
/13
Il 4
/15
Il 6
7
Il 8

/11
112
/13
Il 4
/15
Il 6
7
/'l 16

/1 17 -- hat bill
/1 18

/1l 19 -- nose
/1l 20
/1 21
/1 22

[/ front quad's

/1 back quad's

/1l side quad's

5,17, 18, 6, /1 hat bill
5, 6, 18, 17,

19, 20, 22, 19, /1 nose
19, 22, 21, 19,
20, 21, 22, 20} ;

for(index = 0; index < 76; index+=4)

{
pol y. Set Vert exLi st (4, &ertex[index]);

AddPol ygon(&pol y) ;

Set Updat eMet hod(scri pt Ani mat ed) ;

return;

voi d HumanHead: : Updat ePost ur e(Command com float dir, float rate, float tinestanp)

switch (com
case wal k:
posture.az = dir;
posture.el = DegToRad(2.5) * sin(2 * rate * tinestanp);
posture.rl = 0;
br eak;
case stand:
defaul t:
posture.az = dir;
posture.el = 0;
posture.rl = 0;
}
Transform);
return;

129

//**

HumanH ps: : HunanH ps()
{

i nt index;
HG&Poi nt poi nt ;
HGPol y pol y;

f1 oat pArray[] = {0,0,0,1, /1 0 -- root
2,0,-1,1, /l 1 -- front
-2101-1111 // 2

2.5,-1.5,-1. 25,1, /13
-2.5,-1.5,-1.25,1, Il 4

2.5,-3,-1,1, /15
-2.5,-3,-1,1, /] 6
2,0,1,1, /1l 7 -- back
-2’011111 // 8

2.5,-1.5,1. 25,1, /19
-2.5,-1.5,1. 25,1, /1 10

2.5,-3,1,1, /1 11

-2.5,-3,1, 1, [l 12

1.5,-2.75,0, 1, [/l 13 -- right I eg anchor
-1.5,-2.75,0, 1}; /[l 14 -- left leg anchor

for (index = 0; index < 60; index += 4)

poi nt . Set Poi nt (&Array[i ndex]);
AddVert ex(&oi nt);

}

i nt vertex[] = {1,3,4, 2, [/l front quad's
3,5,6,4,
7,8, 10, 9, /1 back quad's
9, 10,12, 11,
1,2,8,7, [/ side quad's
2,4, 10,8,
4,6, 12, 10,
6,5, 11, 12,
5,3,9, 11,
3,1,7,9};

for(index = 0; index < 40; index+=4)

{
pol y. Set VertexLi st (4, &ertex[index]);

| AddPol ygon(&ol y) ;

Set Updat eMet hod(scri pt Ani mat ed) ;

return;

130

voi d HumanH ps: : Updat ePost ur e(Command com float dir, float rate, float tinestanp)

switch (com
case wal k:
posture.az = dir + (DegToRad(10) * sin(rate * tinestanp));
posture.el = 0;
posture.rl = DegToRad(10) * -sin(rate * tinmestanp);
br eak;
case stand:
defaul t:
posture.az = dir;
posture.el = 0;
posture.rl = 0;
}
Transform);
return;

131

//**

HunmanUpper Leg: : HunanUpper Leg()
{

i nt index;
HG&Poi nt poi nt ;
HGPol y pol y;

f1 oat pArray[] = {0,0,0,1, /1 root
1,0,-1, 1, /l 1 -- front
-1101-1111 // 2

1.25,-2,-1.25,1, /13
-1.25,-2,-1.25,1, Il 4
0.75,-6.5,-0.75, 1, /15
-0.75,-6.5,-0.75,1, Il 6

1,0,1,1, /[l 7 -- front
-1,0,1, 1, /! 8
1.25,-2,1.25,1, /1 9
-1.25,-2,1.25,1, /1 10
0.75,-6.5,0.75,1, /1 11
-0.75,-6.5,0.75, 1, /1 12

0,-6.25,0,1}; [/l 13 -- lower |eg anchor
for (index = 0; index < 56; index += 4)

poi nt . Set Poi nt (&Array[i ndex]);
AddVer t ex(&poi nt) ;

}

i nt vertex[] = {1,342, /1 front quad's
3,5, 6, 4,
7,8, 10, 9, /1 back quad's
9, 10, 12, 11,
1,2,8,7, /1 side quad's
2,4,10, 8,
4,6,12, 10,
6, 5,11, 12,
5,3,9, 11,
3,1,7,9};

for(index = 0; index < 40; index+=4)

pol y. Set VertexLi st (4, &ertex[index]);
AddPol ygon(&ol y) ;

Set Updat eMet hod(scri pt Ani mat ed) ;

return;

132

/! Human right upper leg scripts
voi d HumanRULeg: : Updat ePost ur e(Command com float dir, float rate, float timnestanp)

switch (com
case wal k:
posture.az = dir;
posture.el = DegToRad(30) * sin(rate * tinestanp);
posture.rl = DegToRad(3) * -fabs(sin(rate * tinestanp));
br eak;
case stand:
defaul t:
posture.az = dir;
posture.el = 0;
posture.rl = 0;
}
Transform);
return;

/1 Human | eft upper leg scripts
voi d HumanLULeg: : Updat ePost ur e(Command com float dir, float rate, float tinestanp)

{sw’tch (com

case wal k:
posture.az = dir;
posture. el = DegToRad(30) * -sin(rate * tinmestanp);
posture.rl = DegToRad(3) * fabs(sin(rate * tinestanp));
br eak;
case stand:
defaul t:
posture.az = dir;
posture.el = 0;
posture.rl = 0;
}
Transform);
return;

133

//**

HunmanLower Leg: : HunanLower Leg()

{

i nt index;

HG&Poi nt poi nt ;

HGPol y pol y;

f1 oat pArray[] = {0,0,0,1,

0.75,0,-0.75,1,
-0.75,0,-0.75, 1,
1,-2,-1,1,
-1,-2,-1,1,
0.25,-6.5,-0.5,1
-0.25,-6.5,-0.5,1,

0.75,0,0.75,1,
-0.75,0,0.75,1,
1,-2,1,1,
-1,-2,1,1,
0.25,-6.5,0.5,1
-0.25,-6.5,0.5,1,

0,-6.25,0, 1};
for (index = 0; index < 56;

poi nt . Set Poi nt (&Array[i ndex]);
AddVer t ex(&poi nt) ;

i ndex += 4)

/1 root

/l 1 -- front
/1 2

/1 3

/1 4
/!l 5

/!l 6

/[l 7 -- front
/! 8

/1 9
/1 10

/] 11

/1 12

/!l 13 -- foot anchor

}

i nt vertex[] = {1,342, /1 front quad's
3,5, 6, 4,
7,8, 10, 9, /1 back quad's
9, 10, 12, 11,
1,2,8,7, /1 side quad's
2,4,10, 8,
4,6,12, 10,
6, 5,11, 12,
5,3,9, 11,
3,1, 7, 9};

for(index = 0; index < 40; index+=4)

pol y. Set VertexLi st (4, &ertex[index]);

AddPol ygon(&ol y) ;

Set Updat eMet hod(scri pt Ani mat ed) ;

return;

134

// Human right lower leg scripts
voi d HumanRLLeg: : Updat ePost ur e(Command com float dir, float rate, float tinestanp)

float aninPoint = fnod((rate * timestanp), (2 * Pi));
switch (com
{

case wal k:
posture.az = dir;
if (animPoint > (3 * P / 2) || aninPoint < (P / 2))
posture.el = (DegToRad(30) * sin(rate * tinestanp)) -
(DegToRad(7*rate) * cos(rate * tinestanp));
el se
posture. el = DegToRad(30) * sin(rate * tinestanp);
posture.rl = 0;
br eak;

case stand:

defaul t;
posture. az
post ure. el
posture.rl

dir;
0;

}
Transform);

return;

135

// Human left lower leg scripts
voi d HumanLLLeg: : Updat ePost ure(Command com float dir, float rate, float timnestanp)

float aninPoint = fnod((rate * timestanp), (2 * Pi));
switch (com
{

case wal k:
posture.az = dir;
if (animPoint < (3 * P / 2) & aninPoint > (Pi / 2))
posture.el = (DegToRad(7*rate) * cos(rate * tinestanp)) -
(DegToRad(30) * sin(rate * tinestanp));
el se
posture. el = DegToRad(30) * -sin(rate * tinestanp);
posture.rl = 0;
br eak;

case stand:

defaul t;
posture. az
post ure. el
posture.rl

dir;
0;

}
Transform);

return;

136

//**

HunmanFoot : : HunanFoot ()
{

i nt index;

HG&Poi nt poi nt ;
HGPol y pol y;
f1 oat pArray|]

for (index = 0;

={0,0,0,1,

-0.25,0,-0.5,1,
-0.25,0,0.5,1,
-0.25,-1.25,-1,1,
-0.5,-1.75,1,1,
-0.25,-2,0.75, 1,
-0.5,-2,-2.25,1
-0.25,-2,-2.75, 1,
-0.25,-1.75,-3,1
-0.75,-1.75,-2.5,1

i ndex

ocooocooo00

25,0,-0.5,1,
25,0,0.5,1,
25,-1.25,-1,1,
5,-1.75,1, 1,
25,-2,0.75,1,
5-2,-2.251,
25,-2,-2.75,1,
25,-1.75,-3,1

.75,-1.75,-2.5,1};

< 76; index += 4)

poi nt. Set Poi nt (&Array[i ndex]);

AddVert ex(&poi nt) ;

}
i nt vertexl[] = {1,3, 2,
3,9,4,
10, 11, 12,
11, 13, 12,
12,13, 18};
for(index = 0; index < 18; index+=3)

pol y. Set VertexLi st (3, &ertexl[index]);
AddPol ygon(&pol y) ;

137

/! root

/1 1 -- left side

/1 10 -- right side
/1 11
/1 12
/1 13
/1 14
/1 15
/1 16
/117
/1 18

[/l foot tri's

i nt vertex2[] = {4,9,6,5, /1 foot quads's

98,7,6,

13, 14, 15, 18,

15, 16, 17, 18,

1,2, 11, 10,
13, 11,
14, 13,
15, 14,
16, 15,
17, 16,
1
1
1

8,17,
2, 18,
0, 12};

WOONDUITAN
WO~ U A

for(index = 0; index < 52; index+=4)

{
pol y. Set Vert exLi st (4, &ertex2[index]);
AddPol ygon(&pol y) ;

Set Updat eMet hod(scri pt Ani mat ed) ;

return;

/1 Human right foot scripts
voi d HumanRFoot : : Updat ePost ur e(Command com float dir, float rate, float tinestanp)

{
float aninPoint = frod((rate * timestanmp), (2 * PFi));

{switch (com

case wal k:
posture.az = dir;
if (animPoint > (3 * P / 2) || aninPoint < (Pi [/ 2))
posture.el = (DegToRad(30) * sin(rate * tinestanp)) -
(DegToRad(7*rate) * cos(rate * tinestanp));
el se
posture. el = DegToRad(30) * sin(rate * tinestanp);
posture.rl = 0;
br eak;

case stand:
defaul t;
post ure. az
post ure. el
posture.rl

dir;
0;
0;

}
Transform);

return;

138

// Human left foot scripts
voi d HumanLFoot : : Updat ePost ur e(Command com float dir, float rate, float tinestanp)

{
float aninPoint = frod((rate * timestanmp), (2 * PFi));

{switch (com

case wal k:
posture.az = dir;
if (animPoint < (3 * P / 2) & aninPoint > (Pi / 2))
posture.el = (DegToRad(7*rate) * cos(rate * tinestanp)) -

el se

post ure. el

posture.rl
br eak;

case stand:

defaul t;
posture. az
post ure. el
posture.rl

}
Transform);

return;

(DegToRad(30) * sin(rate * tinestanp));

= 0;

dir;
0;

= DegToRad(30) * -sin(rate * tinestanp);

//**

HumanRUAr m : HunanRUAr n{)

{

i nt index;

HGPoi nt poi nt ;

HGPol y pol y;

fl oat pArray[] = {0,0,0,1, /1 root
1,-0.25,-1,1, /11 -- front
0,0.5,-1,1, /] 2
1.25,-2.25,-1,1, /1 3
-0.25,-2.25,-1,1, /] 4
1,-5,-0.5,1, I/l 5
0,-5,-0.5,1, I/l 6
1,-0.25,1,1, 117 -- front
0,0.51,1, Il 8
1.25,-2.25,1,1, /19
-0.25,-2.25,1,1, /1 10
1,-5,0.51, /111
0,-5,0.5,1, /] 12
0.5,-4.75,0, 1}; /1 13 -- R I ower arm anchor

139

for (index = 0; index < 56; index += 4)

poi nt . Set Poi nt (&Array[i ndex]);
AddVer t ex(&poi nt) ;

}

i nt vertex[] = {1,342, /1 front quad' s
3,5,6,4,
7,8, 10, 9, /'l back quad's
9,10, 12, 11,
1,2,8,7, /1 side quad's
2,4, 10,8,
4,6, 12, 10,
6,5, 11,12,
5,3,9, 11,
3! 1! 7! 9}!

for(index = 0; index < 40; index+=4)
pol y. Set VertexLi st (4, &ertex[index]);
AddPol ygon(&pol y) ;

Set Updat eMet hod(scri pt Ani mat ed) ;

return;

voi d HumanRUAr m : Updat ePost ur e(Command com float dir, float rate, float tinestanp)

{sw’tch (com

case wal k:
posture.az = dir;
posture. el = DegToRad(30) * -sin(rate * tinmestanp);
posture.rl = 0;
br eak;
case stand:
defaul t:
posture.az = dir;
posture.el = 0;
posture.rl = 0;
}
Transform);
return;

140

//**

HunmanLUAr m : HunanLUAr n()

{
i nt index;
HG&Poi nt poi nt ;
HGPol y pol y;
f1 oat pArray[] = {0,0,0,1, /1 root
0,0.5,-1,1, [/ 1 -- front
-1,-0.25,-1, 1, /1 2
0.25,-2.25,-1, 1, /1 3
-1.25,-2.25,-1, 1, /1 4
0,-5,-0.5,1, /!l 5
-1,-5,-0.5,1, /! 6
0,0.5,1,1, /[l 7 -- front
-1,-0.25,1, 1, /1 8
0.25,-2.25,1, 1, /1 9
-1.25,-2.25,1, 1, /1 10
0,-5,0.5,1, /1 11
-1,-5,0.5,1, /1 12
-0.5,-4.75,0, 1}; /!l 13 -- L | ower arm anchor
for (index = 0; index < 56; index += 4)
poi nt . Set Poi nt (&Array[i ndex]);
AddVer t ex(&poi nt) ;
}
i nt vertex[] = {1,342, /1 front quad's
3,5, 6, 4,
7,8, 10, 9, /1 back quad's
9,10, 12,11,
1,2,8,7, /1 side quad's
2,4,10, 8,
4,6,12, 10,
6, 5,11, 12,
5,3,9, 11,
3,1,7,9};
for(index = 0; index < 40; index+=4)
pol y. Set VertexLi st (4, &ertex[index]);
AddPol ygon(&ol y) ;
Set Updat eMet hod(scri pt Ani mat ed) ;
return;
}

141

voi d HumanLUAr m : Updat ePost ur e(Command com float dir, float rate, float timnestanp)
{

switch (com
case wal k:
posture.az = dir;
posture.el = DegToRad(30) * sin(rate * tinestanp);
posture.rl = 0;
br eak;
case stand:
defaul t:
posture.az = dir;
posture.el = 0;
posture.rl = 0;
}
Transform);
return;

//**

HunmanLower Ar m ; HunanLower Ar m()
{

i nt index;

HGPoi nt poi nt ;

HGPol y pol y;

fl oat pArray[] = {0,0,0,1, /1 root
0.5,0,-0.5,1, [/ 1 -- front
-0.5,0,-0.5,1, /12
0.75,-1.5,-0.75, 1, /13
-0.75,-1.5,-0.75, 1, Il 4
0.25,-5,-0.3,1, /15
-0.25,-5,-0.3,1, /16
0.5,0,0.5,1, /1 7 -- back
-0.5,0,0.5,1, /1 8
0.75,-1.5,0.75, 1, /19
-0.75,-1.5,0.75, 1, /1 10
0.25,-5,0.3,1, /1 11
-0.25,-5,0.3,1, /1 12
0,-4.75,0,1}; // 13 -- hand anchor

for (index = 0; index < 56; index += 4)

poi nt. Set Poi nt (&Array[i ndex]);
AddVer t ex(&poi nt) ;

142

i nt vertex[] ={1,3,4,2, /1 front quad' s
3,5,6,4,
7,8, 10, 9, /1 back quad's
9,10, 12, 11,
1,2,8,7, /1 side quad's
2,4,10, 8,
4,6, 12, 10,
6,5, 11,12,
5,3,9, 11,
3,1,7,9};

for(index = 0; index < 40; index+=4)
pol y. Set VertexLi st (4, &vertex[index]);
AddPol ygon(&pol y) ;

Set Updat eMet hod(scri pt Ani mat ed) ;

return;

/1 Human right | ower armscript
voi d HumanRLAr m : Updat ePost ur e(Command com float dir, float rate, float tinestanp)

{

switch (con
case wal k:
posture.az = dir;
posture. el = DegToRad(4*rate) - DegToRad(30) * sin(rate * tinestanp);
posture.rl = 0;
br eak;
case stand:
defaul t:
posture.az = dir;
posture.el = 0;
posture.rl = 0;
}
Transform);
return;

143

[/ Human left | ower armscript
voi d HumanLLAr m : Updat ePost ur e(Command com float dir, float rate, float tinestanp)

{

switch (com
case wal k:
posture.az = dir;
posture. el = DegToRad(4*rate) + DegToRad(30) * sin(rate * tinestanp);
posture.rl = 0;
br eak;
case stand:
defaul t:
posture.az = dir;
posture.el = 0;
posture.rl = 0;
}
Transform);
return;

//**

HunmanRHand: : HunanRHand()
{
i nt index;
HGPoi nt poi nt ;
HGPol y pol y;

fl oat pArray[] = {0,0,0,1, /1 root
-0.25,0,-0.15,1, /] 1 -- pal mside
-0.25,0,0.3,1, Il 2
-0.25,-1.5,-0.3,1, /13
-0.25,-1.5,0.75, 1, /Il 4
-0.25,-3,-0.15,1, /15
-0.25,-3,0.3,1, /1 6
-0.25,0,-0.3,1, 17
-0.25,-0.5,-0.75,1, /1 8
-0.25,-2,-0.6,1, /19
-0.25,-2,-0.3,1, /1 10
0.25,0,-0.15,1, /1l 11 -- back side
0.25,0,0.3,1, /1 12
0.4,-1.5,-0.3,1, /1 13
0.4,-1.5,0.75, 1, /1 14
0,-3,-0.15,1, /1 15
0,-3,0.3,1, Il 16
0.25,0,-0.3,1, /117
0.25,-0.5,-0.75,1, /1 18
0,-2,-0.6,1, /1 19
0,-2,-0.3,1, /1 20
0.1,-1.5,-0.3, 1}; /1 21

144

for (index = 0; index < 88; index += 4)

poi nt . Set Poi nt (&Array[i ndex]);
AddVer t ex(&poi nt) ;

}

i nt vertex[] 1,342, /1 back side quad's

1,12, 14, 13, /1 pal mside quad' s
13, 14, 16, 15,
11, 13, 18, 17,
13, 20, 19, 18,

2,12,17,7,
7,17, 18, 8,

e

O UTW N © ™
= ©

0
N =
N

wor

54
PR

RO UTWE ©®
NAOUINO©

[
N Aol

-~

for(index = 0; index < 68; index+=4)

pol y. Set VertexLi st (4, &vertex[index]);
AddPol ygon(&pol y) ;
}

Set Updat eMet hod(scri pt Ani mat ed) ;

return;

145

/1 Human right hand scri pt

voi d HumanRHand: : Updat ePost ur e(Command com float dir, float rate, float tinestanp)

{

switch (com
case wal k:
post ure. az
post ur e. el
posture.rl
break;
case stand:
defaul t:
post ure. az
post ure. el
posture.rl
}
Transform);
return;

dir;

DegToRad(4*r at e+15) - DegToRad(30) * sin(rate * tinestanp);

dir;
0;
0;

//**

HunmanLHand: : HunanLHand()

{

i nt index;

HGPoi nt poi nt ;
HGPol y pol y;

fl oat pArray[] =

0,0,0,1,

25,0,-0.15,1,
25,0,0.3,1,
25,-1.5,-0. 3,1,
25,-1.5,0.75,1,
25,-3,-0.15,1,
25,-3,0.3, 1,
25,0,-0.3,1,
25,-0.5,-0.75,1,
25,-2,-0.6,1,
.25,-2,-0.3,1,

ocooocooo000 =&

1
O OrRrO

Iool
1
PNNDNNOWRDRN

1
POoo/

146

/1 root

/[l 1 -- pal mside

~———
~——
AWN

/!l 11 -- back side
/1 12
/1 13
/1l 14
/1 15

[/l 16
/! 17
/] 18

/1 19

/1 20
/1 21

for (index = 0; index < 88; index += 4)

poi nt . Set Poi nt (&Array[i ndex]);
AddVer t ex(&poi nt) ;

}

i nt vertex[] 1,2,4,3, /1 back side quad's

3,14, 12, /1 pal mside quad' s
13, 15, 16, 14,
11,17, 18, 13,
13, 18, 19, 20,

2,7,17, 12,

for(index = 0; index < 68; index+=4)

pol y. Set VertexLi st (4, &vertex[index]);
AddPol ygon(&pol y) ;
}

Set Updat eMet hod(scri pt Ani mat ed) ;

return;

147

/1 Human | eft hand scri pt
voi d HumanLHand: : Updat ePost ur e(Command com float dir, float rate, float tinestanp)

switch (com
case wal k:
posture.az = dir;
posture. el = DegToRad(4*rate+15) + DegToRad(30) * sin(rate * tinestanp);
posture.rl = 0;
br eak;
case stand:
defaul t:
posture.az = dir;
posture.el = 0;
posture.rl = 0;
}
Transform);
return;

148

3. Filee HumanBody.h

/**************

HumanBody. h -- overal | human body obj ect

***************/

#pragma once

#i ncl ude "HumanBodyPart s. h"
#i ncl ude "HGVi ewPoi nt . h"

/1 Human Body
cl ass HumanBody

publi c:

HunmanTor so torso;
HunmanHead head;

HumanH ps hi ps;

HumanRULeg rul eg;
HumanLULeg [ul eg;
HumanRLLeg rileg;
HumanLLLeg 11 eg;
HumanRFoot rfoot;
HunmanLFoot | f oot ;
HumanRUAr m ruarm
HumanLUAr m | uarm
HumanRLAr m rlarm
HumanLLAr m [larm
HumanRHand r hand;
HurmanLHand | hand;

Command current Moti on;
Command comrmandedMot i on;

float currentDi rection;
fl oat commandedD recti on;

fl oat currentRate;
fl oat comandedRat e;

float currentTi neStanp;

HunanBody/() ;

voi d Set BodyDr awi ngMode(Dr awi nghMbdeType) ;

voi d Set BodyMat eri al Type(HGVat eri al Type *);

voi d Motion(Conmand com float direction, float rate, float tinmeStanp);
voi d Render (HGVi ewPoi nt *vi ewPoi nt) ;

149

4. Filee HumanBody.cpp

/**************

HumanBody. cpp -- overal |

witten for MacCs by WI Frey
nodi fied for pen@ by WI Frey

***************/

#pragma once

#i ncl ude "HunmanBody. h"

/1 overall hunman body
HunmanBody: : HunanBody/()

{

head. Set At t achrent Poi nt (& or so,
hi ps. Set At t achrrent Poi nt (& or so,

rul eg. Set At t achment Poi
| ul eg. Set At t achmrent Poi
rileg. Set Attachment Poi
Il eg. Set At t achrent Poi
rf oot . Set At t achnent Poi
| f oot . Set At t achment Poi
r uar m Set At t achmrent Poi
| uar m Set At t achmrent Poi
rl arm Set At t achmrent Poi
I I arm Set At t achmrent Poi
r hand. Set At t achmrent Poi
| hand. Set At t achnent Poi

nt (&hi ps,
nt (&hi ps,
nt (& ul eg,
nt (& ul eg,
nt (&1 egq,
nt(&1I1Ieg,
nt (& or so,
nt (& or so,
nt (& uarm
nt (& uarm
nt(&larm
nt(&Ilarm

Set BodyDr awi nghbde(wi r eFr arre) ;

currentTimeStanp = 0;

currentDrection = 0;

commandedDi recti on = O;

current Moti on = stand;

commandedMbt i on = st and;

return;

human body obj ect

26, absol ute);
25, absol ute);
13, absolute);
14, absol ute);

13,
13,
13,
27,

13,
13,

13,

150

absol ute);
absol ute);
absol ute);
absol ute);
absol ute);
absol ute);
absol ute);
absol ute);
absol ute);
absol ute);

voi d HunmanBody: : Set BodyDr awi nghbde(Dr awi nghbdeType node)

{
t or so. Set BodyDr awi nghbde(node) ;
head. Set BodyDr awi nghbde(node) ;
hi ps. Set BodyDr awi nghbde(node) ;
r ul eg. Set BodyDr awi nghbde(node) ;
| ul eg. Set BodyDr awi nghbde(node) ;
ril eg. Set BodyDr awi nghbde(node) ;
I I'l eg. Set BodyDr awi nghbde(nmode) ;
rf oot . Set BodyDr awi nghbde(nmode) ;
| f oot . Set BodyDr awi nghbde(node) ;
r uar m Set BodyDr awi nghbde(node) ;
| uar m Set BodyDr awi nghbde(node) ;
rl arm Set BodyDr awi nghbde(node) ;
| I ar m Set BodyDr awi nghMode(node) ;
r hand. Set BodyDr awi nghbde(nmode) ;
| hand. Set BodyDr awi nghbde(node) ;

return;

voi d HunmanBody: : Set BodyMat eri al Type(HGVat eri al Type *materi al)

{
t or so. Set BodyMat eri al Type(naterial);
head. Set BodyMat eri al Type(nmaterial);
hi ps. Set BodyMat eri al Type(nmaterial);
rul eg. Set BodyMat eri al Type(naterial);
| ul eg. Set BodyMat eri al Type(raterial);
rileg. Set BodyMat eri al Type(rnaterial);
I'I'l eg. Set BodyMat eri al Type(raterial);
rf oot . Set BodyMat eri al Type(nmaterial);
| f oot . Set BodyMat eri al Type(naterial);
ruarm Set BodyMat eri al Type(naterial);
| uar m Set BodyMat eri al Type(naterial);
rlarm Set BodyMat eri al Type(naterial);
I I arm Set BodyMat eri al Type(naterial);
r hand. Set BodyMat eri al Type(rateri al) ;
| hand. Set BodyMat eri al Type(nmaterial);

return;

151

voi d HunmanBody: : Mot i on(Command com float direction, float rate, float tineStanp)

{
Comrand passedCom

switch (com

case stand:
switch (currentMtion)
{
case stand:
case halt:
def aul t:
passedCom = st and;
currentTimeStanp = 0;
br eak;

case wal k:
if ((Pi - frnod((currentRate * currentTineStanp),Pi)) > (P /
20))

passedCom = wal k;
currentD rection
current Ti meSt anp

direction;
ti meSt anp;

}

el se

{ .
current Mbti on = stand;
currentRate = 0;
currentDrection
current Ti meSt anp
passedCom = st and;

direction;
0;

}

br eak;
br eak;

case wal k:
switch (currentMtion)

case stand:
current Motion = wal k;
passedCom = wal k;
currentRate = rate;
currentDrection = direction;
currentTimeStanp = ti neStanp;
br eak;

case wal k:
passedCom = wal k;
currentDrection = direction;
currentTimeStanp = ti neStanp;
br eak;

br eak;

152

t or so. Updat ePost ur e(passedCom currentDi recti on,
head. Updat ePost ur e(passedCom currentD recti on,
hi ps. Updat ePost ur e(passedCom currentD recti on,

rul eg. Updat ePost ur e(passedCom
| ul eg. Updat ePost ur e(passedCom
ril eg. Updat ePost ur e(passedCom
I Il eg. Updat ePost ur e(passedCom
r f oot . Updat ePost ur e(passedCom
| f oot . Updat ePost ur e(passedCom
ruar m Updat ePost ur e(passedCom
| uar m Updat ePost ur e(passedCom
r | arm Updat ePost ur e(passedCom
I I ar m Updat ePost ur e(passedCom
r hand. Updat ePost ur e(passedCom
I hand. Updat ePost ur e(passedCom

return;

voi d HunmanBody: : Render (HGVi ewPoi nt

{

vi ewPoi
Vi ewPoi
Vi ewPoi
Vi ewPoi
vi ewPoi
Vi ewPoi
vi ewPoi
vi ewPoi
Vi ewPoi
Vi ewPoi
Vi ewPoi
Vi ewPoi
Vi ewPoi
vi ewPoi
vi ewPoi

nt - >Render (bj ect (&head) ;
nt - >Render (bj ect (&hi ps) ;

return;

currentDrecti
currentDrecti
currentDrecti
currentDrecti
currentDrecti
currentDrecti
currentDrecti
currentDrecti
currentDrecti
currentDrecti
currentDrecti
currentDrecti

*vi ewPoi nt)

nt - >Render (bj ect (& or so) ;

nt - >Render (bj ect (&r ul eg) ;
nt - >Render (bj ect (& ul eg) ;
nt - >Render (bj ect (& 11 eQ);
nt - >Render (bj ect (& |11 eg);
nt - >Render (bj ect (& foot) ;
nt - >Render (bj ect (& f oot) ;
nt - >Render Cbj ect (& uarnj;
nt - >Render (bj ect (& uarnj;
nt - >Render (bj ect (&l arnj;
nt - >Render (bj ect (& I arnj;
nt - >Render (bj ect (& hand) ;
nt - >Render (bj ect (& hand) ;

153

on,
on,
on,
on,
on,
on,
on,
on,
on,
on,
on,
on,

currentRate, currentTi neStanp);
currentRate, currentTi neStanp);
currentRate, currentTi neStanp);

current Rat e,
current Rat e,
current Rat e,
current Rate,
current Rat e,
current Rat e,
current Rat e,
current Rat e,
current Rat e,
current Rat e,
current Rate,
current Rat e,

currentTi
currentTi
currentTi
currentTi
currentTi
currentTi
currentTi
currentTi
currentTi
currentTi
currentTi
currentTi

nmest anp) ;
nmeSt anp) ;
nmeSt anp) ;
nest anp) ;
neSt anp) ;
neSt anp) ;
neSt anp) ;
nmest anp) ;
nmeSt anp) ;
nmeSt anp) ;
nest anp) ;
neSt anp) ;

154

[BACHO6]

[BADL93]

[BIBLOS]

[BOWD77]

[BROW92]

[BROX 64]

[COOK92]

[CRAISY]

[DEVES6]

[FOXL94]

[FREY 95]

[HOWAGE]

[MCGH93]

LIST OF REFERENCES

Bachman, E. and Gay, D., 1996, Design and Evaluation of an Integrated
GPYINS System for Shallow-Water AUV Navigation (SANS), Master's Thesis,
Computer Sciencs Department, Naval Postgraduate School, Monterey, California.

Badler, N., 1993, Smulating Humans. Computer Graphics Animation and
Control, Oxford University Press, New York, NY.

Bible, S., 1995, Using Spread-Spectrum Ranging Techniques for Position
Tracking in a Virtual Environment, Computer Science Department, Naval
Postgraduate School, Monterey, California.

Bowditch, N., 1977, American Practical Navigator, United States Defense
Mapping Agency Hydrographic Center.

Brown, R. and Hwang, P., 1992, Introduction to Random Sgnals and Applied
Kalman Filtering, Second Edition, John Wiley and Sons, Inc., New York, NY.

Broxmeyer, C., 1964, Inertial Navigation Systems, McGraw-Hill Book
Company, New York, New York.

Cooke, J., 1992, NPSNET: Flight Smulation Dynamic Modeling Using
Quaternions, "Presence: Teleoperators and Virtual Environments’, Volume1l,
Number 4, Fall 1992.

Craig, J., 1989, Introduction to Robotics, Mechanics and Control, Second
Edition, Addison-Wesley Publishing Company, Menlo Park, California.

Develco, 1986, Operation Manual, 9200 Series 3-Axis Fluxgate Magnetometer,
Develco, 175 Nortech Parkway, San Jose, California, 95134-2306.

Foxlin, E. and Durlach, N., 1994, An Inertial Head-Orientation Tracker with
Automatic Drift Compensation for Use with HMD's Massachusetts I nstitute of
Technology, Cambridge, Massachusetts.

Frey, W., 1995, Off-the-Shelf, Real-Time, Human Body Motion Capture for
Synthetic Environments, Computer Science Department, Naval Postgraduate
School, Monterey, California.

Howard, I. and Templeton, W., 1966, Human Spatial Orientation , John Wiley
and Sons Ltd., London, England.

McGhee, R., 1993, CS4314 Class Notes: Derivation of Body Angular Rates to

Euler Angle Rates Relationship, Computer Science Department, Naval
Postgraduate School, Monterey, California.

155

[MCGH95] McGhege, R., 1995, An Experimental Study of An Integrated GPSINS System for
Shallow-Water AUV Navigation (SANS), Proceedings of the 9th International
Symposium on Unmanned, Untethered Submersible Technology, Durham, NH.

[MCGH96A] McGhege, R., 1996, CS-4920 Class Notes: Derivation of SANSFilter Equations,
Computer Science Department, Naval Postgraduate School, Monterey, California.

[MCGH96B] McGheg, R., 1996, Research Notes: Estimation of Heading From a 3-Axis
Magnetometer, Computer Science Department, Naval Postgraduate School,
Monterey, California.

[MCMI96] McMillan, S., 1996, Upper Body Tracking Using the Polhemus Fastrak,
Technical Report NPSCS-96-002, Naval Postgraduate School, Monterey,
Cdlifornia.

[NRC95] National Research Council (NRC), Committee on Virtual Reality Research and
Development, 1995, Virtual Reality : Scientific and Technological Challenges
National Academy Press, Washington, DC.

[ODON64] O'Donnél, C., 1964, Inertial Navigation Analysis and Design, McGraw-Hill
Book Company, New York, New Y ork.

[OPEN94] OpenGL Architecture Review Board, 1994, OpenGL Programming Guide: The
Official Guideto Learning OpenGL, Release 1, Addison-Wesley Publishing
Company, Reading, Massachusetts.

[SKOP96] Skopowski, P., 1996, Human Upper Body Motion Tracking: A Kinematic
Approach, Computer Science Department, Naval Postgraduate School,
Monterey, Cdifornia.

[WALD95] Waldrop, M., 1995, Real-Time Articulation of the Upper Body for Smulated

Humansin Virtual Environments, Master's Thesis, Computer Science
Department, Naval Postgraduate School, Monterey, California.

156

BIBLIOGRAPHY

Fisher, S., 1992, Virtual Interface Environments "Presence: Teleoperatorsand Virtual
Environments®, Volume 1, Number 1, Winter 1992.

Hollands, R., 1995, Sourceless Trackers, "VR News', Volume 4, Issue 3, April 1995.

Meyer, K. and Applewhite, H., 1992, A Survey of Position Trackers, "Presence: Teleoperators
and Virtual Environments’, Volume 1, Number 2, Spring 1992.

Robinett, W., 1992, Synthetic Experience: A Proposed Taxonomy. "Presence: Teleoperators
and Virtual Environments', Volume 1, Number 2, Spring 1992.

Rogers, D. and Adams, J., 1990, Mathematical Elements for Computer Graphics, McGraw-
Hill, Inc., New York, NY.

Ruediger, S., 1996, Smulation-Based Validation of Navigation Filter Software for a Shallow

Water AUV Navigation System, Masters Thesis, Computer Science Department, Naval
Postgraduate School, Monterey, California.

157

158

INITIAL DISTRIBUTION LIST

Defense Technical INformation CaNntarcoviiiiiie e
8725 John J. Kingman Road, Suite 0944
Fort Belvoir, VA 22060-6218

Dudley KNOX LiDrary. ... e
Naval Postgraduate School

411 Dyer Road

Monterey, California 93943-5101

[Ta o (0 G 1= = P
Chairman

Computer Science Department

Naval Postgraduate School

Monterey, CA 93943

Doctor MiChael Zyda o
Associate Chairman

Computer Science Department

Naval Postgraduate School

Monterey, CA 93943

Doctor RODEMT MCGREE..o e
Professor

Computer Science Department

Naval Postgraduate School

Monterey, CA 93943

RUSSWWNal BN ...
Manager, Center for AUV Research

Computer Science Department

Naval Postgraduate School

Monterey, CA 93943

BN C FOX N, o
Research Laboratory of Electronics

Massachusettes I nstitute of Technology

Cambridge, MA 02139

WA Y . e e
c/o Judith Harper

Gen. Del. Cedar Mtn. Rd.

Divided, CO 80814

159

